Anti-Atherosclerosis Activity of Rosmarinic Acid in Human Aortic Smooth Muscle Cells

사람 동맥 평활근 세포에 대한 Rosmarinic Acid의 항동맥경화 활성

  • Ha, Jung-Jae (Department of Prescriptionology, Collage of Oriental Medicine, Dongguk University) ;
  • Yun, Hyun-Jeong (Cardiovascular Medical Research Center) ;
  • Huh, Joon-Young (Department of Prescriptionology, Collage of Oriental Medicine, Dongguk University) ;
  • Kim, Jai-Eun (Cardiovascular Medical Research Center) ;
  • Park, Sun-Dong (Cardiovascular Medical Research Center)
  • 정재하 (동국대학교 한의과대학 방제학교실) ;
  • 윤현정 (심혈관계질환 천연물 연구개발센터) ;
  • 허준영 (동국대학교 한의과대학 방제학교실) ;
  • 김재은 (심혈관계질환 천연물 연구개발센터) ;
  • 박선동 (심혈관계질환 천연물 연구개발센터)
  • Published : 2009.12.25

Abstract

Rosmarinic acid frequently found as a secondary metabolite in herbs and medicinal plants, has exhibited antimicrobial, antiviral, antioxidative, and anti-inflammatory activities. The proliferation and migration of human aortic smooth muscle cells (HASMC) in response to activation by various stimuli plays a critical role in the initiation and development of atherosclerosis. This study was conducted to examine the effects of Rosmarinic acid on the proliferation and migration of HASMC. Rosmarinic acid suppressed the proliferation of HASMC via induction of the expression of apoptotic proteins including cleaved poly ADP-ribose polymerase (PARP), and caspase-3. Rosmarinic acid decreased anti-apoptotic Bcl-2 and increased pro-apoptotic Bax. Moreover, treatment of rosmarinic acid decreased the G1/S cycle regulation proteins (cyclin D1, cyclin E, CDK2, CDK4 and CDK6) and increased p21, p27 and p53. Rosmarinic acid also blocked HASMC migration via suppression of MMP-9 and MMP-2. Taken together, these results indicate that rosmarinic acid has the potential for use as an anti-atherosclerosis agent.

Keywords

References

  1. Pirker, K.F., Kay, C.W., Stolze, K., Tunega, D., Reichenauer, T.G., Goodman, B.A. Free radical generation in rosmarinic acid investigated by electron paramagnetic resonance spectroscopy. Free Radic Res. 43(1):47-57, 2009 https://doi.org/10.1080/10715760802585236
  2. Fujimoto, A., Sakanashi, Y., Matsui, H., Oyama, T., Nishimura, Y., Masuda, T., Oyama, Y. Cytometric analysis of cytotoxicity of polyphenols and related phenolics to rat thymocytes: potent cytotoxicity of resveratrol to normal cells. Basic Clin Pharmacol Toxicol. 104(6):455-462, 2009 https://doi.org/10.1111/j.1742-7843.2009.00386.x
  3. Inoue, K., Takano, H., Shiga, A., Fujita, Y., Makino, H., Yanagisawa, R., Kato, Y., Yoshikawa, T. Effects of volatile constituents of rosemary extract on lung inflammation induced by diesel exhaust particles. Basic Clin Pharmacol Toxicol. 99(1):52-57, 2006 https://doi.org/10.1111/j.1742-7843.2006.pto_401.x
  4. Sanbong,i C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K.I., Sadakane, K., Ichinose, T., Yoshikawa, T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy. 34(6):971-977, 2004 https://doi.org/10.1111/j.1365-2222.2004.01979.x
  5. Lee, J., Jung, E., Koh, J., Kim, Y.S., Park, D. Effect of rosmarinic acid on atopic dermatitis. J Dermatol. 35(12):768-771, 2008 https://doi.org/10.1111/j.1346-8138.2008.00565.x
  6. Swarup, V., Ghosh, J., Ghosh, S., Saxena, A., Basu, A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother. 51(9):3367-3370, 2007 https://doi.org/10.1128/AAC.00041-07
  7. Petersen, M., Simmonds, M.S. Rosmarinic acid. Phytochemistry. 62(2):121-125, 2003 https://doi.org/10.1016/S0031-9422(02)00513-7
  8. Iuvone, T., De Filippis, D., Esposito, G., D'Amico, A., Izzo, A.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther. 317(3):1143-1149, 2006 https://doi.org/10.1124/jpet.105.099317
  9. Aquilano, K., Filomeni, G., Di Renzo, L., Vito, M., Stefano, C., Salimei, P.S., Ciriolo, M.R., Marf$\acute{e}$, G. Reactive oxygen and nitrogen species are involved in sorbitol-induced apoptosis of human erithroleukaemia cells K562. Free Radic Res. 41(4):452-460, 2007 https://doi.org/10.1080/10715760601134459
  10. Lin, S.J., Lee, I.T., Chen, Y.H., Lin, F.Y., Sheu, L.M., Ku, H.H., Shiao, M.S., Chen, J.W., Chen, Y.L. Salvianolic acid B attenuates MMP-2 and MMP-9 expression in vivo in apolipoprotein-E-deficient mouse aorta and in vitro in LPS-treated human aortic smooth muscle cells. J Cell Biochem. 100(2):372-384, 2007 https://doi.org/10.1002/jcb.21042
  11. Desai, A., Vyas, T., Amiji, M. Cytotoxicity and apopotosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. 97(7):2745-2756, 2008 https://doi.org/10.1002/jps.21182
  12. Magaud, J.P., Sargent, I., Mason, D.Y. Detection of human white cell proliferative responses by immunoenzymatic measurement of bromodeoxyuridine uptake. J Immunol Methods. 106(1):95-100, 1988 https://doi.org/10.1016/0022-1759(88)90276-1
  13. Moon, S.K., Cha, B.Y., Kim, C.H. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: Involvement of the ras dependent pathway. J Cell Physiol. 198(3):417-427, 2004 https://doi.org/10.1002/jcp.10435
  14. Moon, S.K., Cha, B.Y., Kim, C.H. In vitro cellular aging is associated with enhanced proliferative capacity, G1 cell cycle modulation, and matrix metalloproteinase-9 regulation in mouse aortic smooth muscle cells. Arch Biochem Biophys. 418(1):39-48, 2003 https://doi.org/10.1016/S0003-9861(03)00402-8
  15. Moon, S.K., Cho, G.O., Jung, S.Y., Gal, S.W., Kwon, T.K., Lee, Y.C., Madamanchi, N.R., Kim, C.H. Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2,·/cell-cycle regulation, and matrix metalloproteinase-9. Biochem Biophys Res Commun. 301(4):1069-1078, 2003 https://doi.org/10.1016/S0006-291X(03)00091-3
  16. Zhang, H.S., Wang, S.Q. Ginsenoside Rg1 inhibits tumor necrosis factor-alpha (TNF-alpha)-induced human arterial smooth muscle cells (HASMCs) proliferation. J Cell Biochem. 98(6):1471-1481, 2006 https://doi.org/10.1002/jcb.20799
  17. Ross, R. Cell biology of atherosclerosis. Annu Rev Physiol. 57:791-804, 1995 https://doi.org/10.1146/annurev.ph.57.030195.004043
  18. Lee, J., Jung, E., Kim, Y., Lee, J., Park, J., Hong, S., Hyun, C.G., Park, D., Kim, Y.S. Br J Pharmacol. Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3. 148(3):366-375, 2006 https://doi.org/10.1038/sj.bjp.0706728
  19. de Carcer, G., de Castro, I.P., Malumbres, M. Targeting cell cycle kinases for cancer therapy. Curr Med Chem. 14(9):969-985, 2007 https://doi.org/10.2174/092986707780362925
  20. Singh, R.P., Agarwal, R. Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr Drug Targets. 7(3):345-354, 2006 https://doi.org/10.2174/138945006776055004
  21. Shukla, S., Gupta, S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 6(9):1102-1114, 2007 https://doi.org/10.4161/cc.6.9.4146
  22. Gupte, R.S., Traganos, F., Darzynkiewicz, Z., Lee, M.Y. Phosphorylation of RIalpha by cyclin-dependent kinase CDK 2/cyclin E modulates the dissociation of the RIalpha-RFC40 complex. Cell Cycle. 5(6):653-660, 2006
  23. Sanz-Gonzalez, S.M., Melero-Fernandez, de Mera R., Malek, N.P., Andres, V. Atheroma development in apolipoprotein E-null mice is not regulated by phosphorylation of p27 (Kip1) on threonine 187. J Cell Biochem. 97(4):735-43, 2006 https://doi.org/10.1002/jcb.20680
  24. Raffetto, J.D., Khalil, R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 75(2):346-359, 2008 https://doi.org/10.1016/j.bcp.2007.07.004
  25. Kim, H.J., Yoo, E.K., Kim, J.Y., Choi, Y.K., Lee, H.J., Kim, J.K., Jeoung, N.H., Lee, K.U., Park, I.S., Min, B.H., Park, K.G., Lee, C.H., Aronow, B.J., Sata, M., Lee, I.K. Protective role of clusterin/apolipoprotein J against neointimal hyperplasia via antiproliferative effect on vascular smooth muscle cells and cytoprotective effect on endothelial cells. Arterioscler Thromb Vasc Biol. 29(10):1558-1564, 2009 https://doi.org/10.1161/ATVBAHA.109.190058
  26. Bendeck, M.P., Irvin, C., Reidy, M.A. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res. 78(1):38-43, 1996 https://doi.org/10.1161/01.RES.78.1.38
  27. Yong, V.W., Krekoski, C.A., Forsyth, P.A., Bell, R., Edwards, D.R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21(2):75-80, 1998 https://doi.org/10.1016/S0166-2236(97)01169-7