Screening of Herbal Medicines from China and Vietnam with Inhibitory Activity on Advanced Glycation End Products (AGEs) Formation (IV)

중국, 베트남산 약용식물의 최종당화산물 생성저해활성 검색 (IV)

  • Kim, Jong-Min (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine) ;
  • Kim, Young-Sook (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine) ;
  • Kim, Joo-Hwan (Department of Life Science, Kyungwon University) ;
  • Yoo, Jeong-Lim (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine) ;
  • Kim, Jin-Sook (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine)
  • 김종민 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김영숙 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김주환 (경원대학교 생명과학과) ;
  • 유정림 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김진숙 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터)
  • Published : 2009.12.31

Abstract

Advanced glycation end products (AGEs) have been implicated in the development of diabetic complications. The AGEs inhibitors or cross-link breakers attenuate various functional and structural manifestations of diabetic complications. In this study, 64 herbal medicines from China and Vietnam have been investigated with an in vitro evaluation system using AGEs inhibitory activity. Of these, eight herbal medicines ($IC_{50}$<50 ${\mu}g$/ml) were found to have strong AGEs inhibitory activity compared with aminoguanidine (14 days, $IC_{50}$=75.98 ${\mu}g$/ml; 28 days, $IC_{50}$=88.27 ${\mu}g$/ml). Particularly, four herbal medicines, Buddleja officinalis (whole plant), Syzygium cuminii (leaf), Eugenia caryophyllate (seed), and Paeonia suffruticosa (root) showed more potent inhibitory activity (approximately 5-6 fold) than the positive control aminoguanidine.

Keywords

References

  1. Ahmed, N. (2005) Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract. 67: 3-21 https://doi.org/10.1016/j.diabres.2004.09.004
  2. Larkins, R. G. and Dunlop, M. E. (1992) The link between hyperglycaemia and diabetic nephropathy. Diabetologia 35: 499-504 https://doi.org/10.1007/BF00400475
  3. Brownlee, M. (2005) The Pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615-1625 https://doi.org/10.2337/diabetes.54.6.1615
  4. Huebschmann, A. G., Vlassara, H., Regensteiner, J. G. and Reusch, J. (2007) Diabetes and advanced glycoxidation end products. Annual review of diabetes 2007 51-63
  5. Rahbar, S. and Figarola, J. L., (2003) Novel inhibitors of advenced glycation endproducts. Arch. Biochem. Biophys. 419: 63-79 https://doi.org/10.1016/j.abb.2003.08.009
  6. Wilkinson-Berka, J. L., Kelly, D. J., Koerner, S. M., Jaworski K., Davis, B., Thallas, V. and Cooper, M. E. (2002) ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic(mREN-2)27 rat. Diabetes. 51: 3283-9 https://doi.org/10.2337/diabetes.51.11.3283
  7. Peppa, M., Brem, H., Cai, W., Zhang, J. G., Basgen, J., Li. Z., Vlassara, H. and Uribarri, J. (2006) Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711). Am. J. Nephrol. 26: 430-6 https://doi.org/10.1159/000095786
  8. Yang, S., Litchfield, J. E. and Baynes, J. W. (2003) AGEbreakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch. Biochem. Biophys. 412: 42-6 https://doi.org/10.1016/S0003-9861(03)00015-8
  9. Jang, D. S., Lee, G. Y., Kim, Y. S., Lee, Y. M., Kim, C. S., Yoo, J. L. and Kim, J. S. (2007) Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol. Pharm. Bull. 30: 2207-10 https://doi.org/10.1248/bpb.30.2207
  10. Jang, D. S., Lee, Y. M., Kim, Y. S. and Kim, J. S. (2006) Screening of Korean traditional herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation. Kor. J. Pharmacogn. 37: 48-52
  11. Lee, Y. M., Kim, Y. S., Kim, J. M., Jang, D. S., Kim, J. W., Yoo, J. L. and Kim, J. S. (2008) Screening of Korean herbal medicines with inhibitory activity on advanced glycation end products (AGEs) formation (II). Kor. J. Pharmacogn. 39: 223-227
  12. Kim, Y. S., Kim, J., Kim, C-S., Sohn, E. J., Lee, Y. M., Jeong, I. H., Kim, H., Jang, D. S. and Kim, J. S. (2009) KIOM-79, an Inhibitor of AGEs-Protein Cross-linking, Prevents Progression of Nephropathy in Zucker Diabetic Fatty Rats. Evid Based Complement Alternat Med. 2009 Jul 15. [Epub ahead of print]
  13. Kim Y. S., Lee, Y. M., Kim, C.-S., Sohn, E. J., Jang, D. S. and Kim, J. S. (2006) Inhibitory effect of KIOM, a new herbal prescription, on AGEs formation and expression of type IV collagen and TGF-$\beta$1 in STZ-induced diabetic rats. Kor. J. Pharmacogn. 37: 103-109
  14. Kim, C.-S., Sohn, E. J., Kim, Y. S., Jung, D. H., Jang, D. S., Lee, Y. M., Kim, D. H. and Kim, J. S. (2007) Effects of KIOM-79 on hyperglycemia and diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. J. Ethnopharmacol. 111(2): 240-247 https://doi.org/10.1016/j.jep.2006.11.023
  15. Vinson, J .A. and Howard, T. B. (1996) Inhibition of protein glycation and advanced glycation endproducts by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 7 :659-663 https://doi.org/10.1016/S0955-2863(96)00128-3
  16. Piao, M. S., Kim, M. R., Lee, D. G., Park, Y., Hahm, K. S., Moon, Y. H. and Woo, E. R. (2003) Antioxidative constituents from Buddleia officinalis. Arch. Pharm. Res. 26: 453-457 https://doi.org/10.1007/BF02976861
  17. Houghton, P. J., Mensah, A. Y., Iessa, N. and Hong, L. Y. (2003) Terpenoids in Buddleja: relevance to chemosystematics, chemical ecology and biological activity. Phytochemistry 64: 385-393 https://doi.org/10.1016/S0031-9422(03)00264-4
  18. Kang, D. G., Lee, Y. J., Kim, J. S. and Lee, H. S. (2008) Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells. Phytother. Res. 22: 1655-1659 https://doi.org/10.1002/ptr.2547
  19. Helmstädter A. (2008). Syzygium cumini (L.) SKEELS (Myrtaceae) against diabetes--125 years of research. Pharmazie. 63: 91-101
  20. Chakraborty. D., Mahapatra, P. K. and Chaudhuri, A. K. (1986). A Neuropsychopharmacological study of Syzygium cuminii. Planta. Med. 52: 139-143 https://doi.org/10.1055/s-2007-969100
  21. Mahapatra, P. K., Chakraborty, D. and Chaudhuri, A. K. (1986) Anti-Inflammatory and Antipyretic Activities of Syzygium cuminii. Planta. Med. 52: 540
  22. Lee, J. I., Lee, H. S., Jun, W. J., Yu, K. W., Shin, D. H., Hong, B. S., Cho, H. Y. and Yang, H. C. (2000). Screening of anticoagulant activities in extracts from edible herbs. J. Korean Soc. Food Sci. Nutr. 29: 335-341
  23. Kim, B. J., Kim, J. H., Kim, H. P. and Heo, M. Y. (1997). Biological screening of 100 plant extracts for cosmetic use (II): anti-oxidative activity and free radical scavenging activity. Int. J. Cosmet. Sci. 19: 299-307 https://doi.org/10.1111/j.1467-2494.1997.tb00194.x