EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS WITH SUBLINEAR GROWTH NONLINEARITIES

WAN SE KIM

ABSTRACT. In this paper, we establish a multiple existence result of T-periodic solutions for the semilinear parabolic boundary value problem with sublinear growth nonlinearities. We adapt sub-supersolution scheme and topological argument based on variational structure of functionals.

1. Introduction

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded domain with smooth boundary ∂u . In this paper, we are concerned with the multiple existence result of *T*-periodic solutions for the semilinear parabolic boundary value problem

$$(P) \qquad \begin{cases} u_t - \triangle_x u + u = g(u) + h(t, x) & \text{in} \quad (0, T) \times \Omega, \\ u = 0 & \text{on} \quad (0, T) \times \partial \Omega, \\ u(0) = u(T) & \text{in} \quad \bar{\Omega}. \end{cases}$$

We assume u = u(t, x), $g : \mathbb{R} \to \mathbb{R}$ is continuous, and $h : \mathbb{R} \times \overline{\Omega} \to \mathbb{R}$ is a continuous function which is *T*-periodic with respect to the first variable and h > 0 on $\mathbb{R} \times \Omega$. There are many results for the multiple existence of *T*-periodic solutions for seminear parabolic equations with this type of nonlinearity in [6, 7, 8, 9], and for elliptic equations also in [2, 4, 10].

Here, we denote Q_T the open set $(0,T) \times \Omega$. For $q \geq 1$, we denote by $|\cdot|_q$ and $||\cdot||_q$ the norms of $L^q(\Omega)$ and $W^{1,q}(\Omega)$, respectively. $||\cdot||$ stands for the norm of $H_0^1(\Omega)$. We put $V = H_0^1(\Omega)$, $H = L^2(\Omega)$. The norm of the dual space V^* of V is denoted by $||\cdot||_*$. $\langle\cdot,\cdot\rangle$ stands for the paring of V and V^* . A function $u \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega))$ is said to be a solution of (P)if u satisfies (P). Here, we assume

 (H_1) g is Lipschitz continuous, nondecreasing, odd function and g(0) = 0,

O2009 The Korean Mathematical Society

Received August 20, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 35K20, 35K55.

 $Key\ words\ and\ phrases.$ multiplicity, periodic solutions, semilinear parabolic equations, sublinear nonlinearity.

This work was supported by the grant R01-2003-000-11731-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

 (H_2) there exist $C_1 > 0$ and $0 < \alpha < 1$ such that $|g(u)| \le C_1 |u|^{\alpha}$ on \mathbb{R} ,

 (H_3) there exists $C_2 > 0$ such that

$$\liminf_{|u| \to 0} \frac{G(u)}{|u|} \ge C_2,$$

where $G(u) = \int_0^u g(s) ds$, (H₄)

$$\lim_{|u| \to \infty} \frac{g(u)}{u} < \lambda_1,$$

 (H_5)

$$\lambda_1 < \lim_{|u| \to 0} \frac{g(u)}{u},$$

where we denote by $\lambda_1 < \lambda_2 \leq \cdots$ the eigenvalues of the problem

 $-\triangle u = \lambda u, \quad u \in H^1_0(\Omega)$

and by
$$\phi_1$$
 the normalized eigenfunction corresponding to λ_1 .

Such a function exists; for example, we first fix a smooth function $\phi: (-\infty, \infty) \to [0, 1]$ such that $\phi'(t) \le a$, and

$$\phi(t) = \begin{cases} 0 & \text{for } t \in (-\infty, -1] \cup [1, \infty) \\ 1 & \text{for } t \in [-\frac{1}{2}, \frac{1}{2}]. \end{cases}$$

Let $n \ge 1$ and t_n^{\pm} be the numbers such that $t_n^- < 0 < t_n^+$ and $g(2t_n^{\pm}) = 2nt_n^{\pm}$. We put

$$g_n(t) = \begin{cases} n\phi_n^+(t)t + (1 - \phi_n^+(t))h(t) & \text{for } t \ge 0\\ n\phi_n^-(t)t + (1 - \phi_n^-(t))h(t) & \text{for } t \le 0, \end{cases}$$

where $h(t) = |t|^{\alpha-1}t$, $\phi_n^+(t) = \phi(\frac{t}{2t_n^+})$ and $\phi_n^-(t) = \phi(\frac{-t}{2t_n^-})$. Then we have that $g_n(t) = nt$ on $[t_n^-, t_n^+]$ and $g_n(t) = h(t)$ on $(-\infty, 2t_n^-) \cup (2t_n^+, \infty)$. For Lipschitz continuity of g_n , let consider the case that t > 0. From the definition, we have $g_n(t) = nt$ on $[0, t_n^+]$. On the other hand, we have that for $t \in [t_n^+, 2t_n^+]$,

$$\begin{aligned} g'_n(t) &= n((\phi_n^+(t))'t + \phi_n^+(t)) + (1 - \phi_n^+(t))h'(t) - (\phi_n^+(t))'h(t) \\ &\leq n\left(\frac{at}{2t_n^+} + 1\right) + \frac{\alpha}{t^{1-\alpha}} + \frac{at}{2t_n^+}t^{\alpha} \\ &\leq n\left(\frac{a}{2} + 1\right) + \frac{\alpha}{(t_n^+)^{1-\alpha}} + \frac{a}{2}(2t_n^+)^{\alpha}. \end{aligned}$$

Then we find $g'_n(t) \leq C \max\{n, h'(t)\}$ for some C > 0. Moreover recalling that $n(2t_n^+)^{1-\alpha} \cong 1$, we find that $h'(t) \leq Cn$ on $[t_n^+, 2t_n^+]$ for some C > 0, and hence each g_n is Lipschitz continuous on \mathbb{R} . Therefore (H_1) - (H_5) follows from the definition.

2. Preliminary results

Let us consider a initial boundary value problem associated with (P)

(I)
$$\begin{cases} u_t - \triangle_x u + u = g(u) + h & \text{in } (0.\infty) \times \Omega \\ u(t) = 0 & \text{on } (0,\infty) \times \Omega \\ u(0) = u_0 & \text{in } \partial\Omega, \end{cases}$$

where $u_0 \in L^2(\Omega)$ and $h \in C^1(\bar{Q}_T)$. We denote by $t(u_0)$ the number such that $[0, t(u_0))$ is the maximal interval for u(t) to exist. If u is a solution of problem (I) on $[0, t(u_0))$, u can be represented by the integral form

(2.1)
$$u(t) = S(t)u_0 + \int_0^t S(t-s)(g(u(s)) - u(s) + h(s,x))ds$$

for $0 < t < t(u_0)$. Here, $\{S(t)\}$ is the semigroup of linear operators generated by $-\Delta_x$. It is known that for each $q \ge 2$, there exists c(q) > 0 satisfying

(2.2)
$$||S(t)f||_q \le c(q)t^{-1/2}|f|_q$$
 for all $f \in L^q(\Omega)$ and $t > 0$

(cf. Amann [1], Tanabe [12]). If we set $X_+ = \{u \in C_0^1(\bar{\Omega}); u \ge 0 \text{ on } \Omega\}$, then X_+ is a closed cone in $C_0^1(\bar{\Omega})$. We employ the standard order in $C_0^1(\bar{\Omega})$ as

 $u \ge v \Leftrightarrow u - v \in X_+, \quad u > v \Leftrightarrow u \ge v, u \ne v, \quad u \gg v \Leftrightarrow u - v \in \operatorname{int} X_+.$

For each $u, v \in C_0^1(\overline{\Omega})$, we put

$$[v,u] = \{ w \in C_0^1(\overline{\Omega}); v \le w \le u \}.$$

A mapping $S : [u, v] \to C_0^1(\bar{\Omega})$ is said to be order preserving if $Sx \gg Sy$ for $x, y \in [u, v]$ with x > y. Here, we denote by S the Poincare mapping associated with problem (I). That is $Su_0 = u(T), u_0 \in H$. It is obvious that the Poincare mapping S is well defined only when $t(u_0) > T$. It follows from the parabolic maximal principle that S is strictly monotone with respect to the order defined above. That is, if u > v in $C_0^1(\bar{\Omega})$ and Su, Sv exist, then $Su \gg Sv$. A function $u \in C^{1,2}((0,T) \times \Omega) \cap C^{0,1}((0,T) \times \bar{\Omega})$ is called subsolution (cf. Hess [5]) for the T-periodic problem (I) if

$$\begin{cases} u_t - \triangle_x u + u \le g(u) + h & \text{ in } (0, \infty) \times \Omega \\ u = 0 & \text{ on } (0, \infty) \times \partial \Omega \\ u(0) = u_0 & \text{ in } \Omega. \end{cases}$$

A subsolution is said to be a strict subsolution if it is not a solution of (I). Similarly, a supersolution and strict supersolution are defined by the inequality sign, correspondingly.

3. Multiplicity result

We set

$$C([0,T];u_0,H)=\{u\in C([0,T],H);u(0,x)=u_0(x) \text{ on } \Omega\}$$

for each $u_0 \in H$. For each $u_0 \in H$, we define a mapping $K_{u_0} : C([0,T]; u_0, H) \to C([0,T]; u_0, H)$ by

$$(K_{u_0}u)(t) = S(t)u_0 + \int_0^t S(t-s)(g(u(s)) - u(s) + h(s,x))ds$$

for each $u \in C([0, T]; u_0, H)$. Then we have:

Lemma 3.1. For each $u_0 \in H$, K_{u_0} is compact and has a unique fixed point in $v_{u_0} \in C([0,T]; u_0, H)$.

Proof. See the proofs of Theorems 1.7 and 2.1 in Chapter 6 of Pazy [11]. \Box

Remark. Since $Su_0 = v_{u_0}(T)$ and v_{u_0} is a solution of (I), v_{u_0} is a periodic solution of (I).

By (H_5) , there exists $\mu_1 > 0$ such that $\frac{g(u)}{u} > \lambda_1$ for all $|u| \le \mu_1$.

Let $0 < \epsilon < 1$ be such that $h - \epsilon \phi_1 > 0$ and $|\epsilon \phi_1|_{\infty} \leq \mu_1$ on Ω . Then we have

$$-\Delta(\epsilon\phi_1) + \epsilon\phi_1 = \epsilon\lambda_1\phi_1 + \epsilon\phi_1 < g(\epsilon\phi_1) + h \text{ on } \Omega.$$

Hence $\epsilon \phi_1$ is a strict subsolution of (I). Let $0 < \lambda < \lambda_1$. By (H_4) , there exists $\mu_2 > 0$ such that $g(u) < \lambda u$ for all $|u| \ge \mu_2$. Put $c = \max\{g(u) : 0 \le u \le \mu_2\}$. Since $\lambda < \lambda_1$. Dirichlet boundary value problem

$$-\Delta_x u = \lambda u + c + h$$

has a solution $v \in H_0^1(\Omega)$. Note that c + h > 0, we have that $v \in C^1(\overline{\Omega})$ and v > 0 on Ω . Let b > 0 and put $\tilde{u} = b\phi_1 + v$. Then

$$\begin{aligned} \lambda v(x) + \lambda_1 b \phi_1(x) &> \lambda (v(x) + b \phi_1(x)) \\ &> g(v(x) + b \phi_1(x)) \text{ for } x \in \Omega \text{ with } \tilde{u}(x) \geq \mu_2 \end{aligned}$$

and $c > g(\tilde{u}(x))$ for $x \in \Omega$ with $\tilde{u}(x) < \mu_2$. Hence, we have

$$-\Delta_x \tilde{u} + \tilde{u} \ge \lambda v + \lambda_1 b \phi_1 + c + h > g(\tilde{u}) + h.$$

Therefore, \tilde{u} is a strict supersolution of (I). Recall that $\partial \phi_1 / \partial n < 0$ and $\partial v / \partial n < 0$ on $\partial \Omega$ by the maximal principle. Then we can choose b > 0 sufficiently large so that $\epsilon \phi_1 \ll \tilde{u}$ on Ω . We know that S is strongly order preserving on $[\epsilon \phi_1, \tilde{u}]$ and

$$S[\epsilon\phi_1, \tilde{u}] \subset [\epsilon\phi_1, \tilde{u}].$$

We know that $S[\epsilon\phi_1, \tilde{u}]$ is relatively compact in $C_0^1(\bar{\Omega})$ (cf. Proposition 21.2 of [5]). Hence, by Theorem 4.2 of [5], we have two sequences $u_n^{(1)} \equiv S^n(\epsilon\phi)$ and $u_n^{(2)} \equiv S^n(\tilde{u})$ which converges to a fixed point $u^{(1)}$ and $u^{(2)}$ of S as $n \to \infty$, respectively and $\epsilon\phi_1 < u^{(1)} \le u^{(2)} < \tilde{u}$. From Remark 21.3 of [5], the problem (P) has a solution $u_1 \in C^{1,2}([0,T] \times \tilde{\Omega})$ with $u_1(0) = u_1(T) = u^{(i)}$ for i = 1, 2 (cf. Lemma 20.1 of [5]). Therefore we have:

Lemma 3.2. For each $h \in C^1(\overline{Q}_T)$ and h > 0, there exist a solution $u_1 \in C^{1,2}([0,T] \times \overline{\Omega})$ of (P) such that $\epsilon \phi_1 < u_1(t) < \overline{u}$ on [0,T].

Next, we prove the existence of the second solution.

By Lemma 3.1, we have:

Lemma 3.3. If $\lim_{n\to\infty} |u_n^{(1)} - u_n^{(2)}|_{c_0^1(\bar{\Omega})} > 0$, then we have two solutions u_1 , u_2 of (P) such that $\epsilon\phi_1 < u_1(0) = u^{(1)} < u_2(0) = u^{(2)} < \bar{u}$.

Proof. cf. Lemma 3.1 and Remark 21.3 in [5].

To complete our assertion, we assume that

(3.1)
$$\lim_{n \to \infty} |u_n^{(1)} - u_n^{(2)}|_{c_0^1(\bar{\Omega})} = 0.$$

Now, we let $I: V \to R$ be a functional defined by

$$I(v) = \frac{1}{2} ||v||_2^2 - \int_{\Omega} G(v) dx$$
 for $v \in V$.

By I^c , we denote the level set $I^c = \{v \in V : I(v) \le c\}$. From the definition of I and (H_2) , we can see that $\lim_{\|v\|_2 \to \infty} I(v) = \infty$. Thus we have that

$$-\infty < m_1 = \min\{I(v) : v \in V\}$$

 (H_3) implies that for any nonzero $v \in V$, there is sufficiently small t > 0 that I(tv) < 0. That is $m_1 < 0$.

Lemma 3.4. For any $\delta \in [m_1, 0]$, there exist $m \ge 1$ and a continuous function $h: S^m \to I^{\delta}$ such that $h(S^m)$ is not contractible in I^{δ} , where S^m denotes the unit sphere in \mathbb{R}^m .

Proof. We put $V_k = \text{span}\{\phi_1, \phi_2, \dots, \phi_k\}$. Fix $\delta \in [m_1, 0]$. Let $v \in V$ with $||v||_2 = 1$. From (H_1) , we have that the mapping $s \to I(sv)$ is decreases on interval [0, t], where t > 0 satisfies

$$I(tv) = \min\{I(sv): s \ge 0\}$$

and increases on $[t, \infty)$. From the definition of I, we have, by (H_2) ,

$$t^{2}||v||_{2}^{2} = \int_{\Omega} g(tv)tvdx \le C_{1} \int_{\Omega} t^{\alpha+1}|v|^{\alpha+1}dx.$$

Suppose that $v \in V_{k-1}^{\perp}$ for some $k \geq 2$. Since $|v|_{\alpha+1}^{\alpha+1} \leq C_3 |v|_2^{\alpha+1}$ for some $C_3 > 0$ and $\lambda_k |v|_2^2 \leq |\nabla v|_2^2$, we have that

$$\begin{aligned} |v^{1-\alpha}| |v||_2^2 &\leq C_1 |v|_{\alpha+1}^{\alpha+1} \\ &\leq C_1 C_3 |v|_2^{\alpha+1} \\ &\leq C_1 C_3 \left(\frac{1}{\lambda_k}\right)^{\alpha+1} ||v||_2^{2(\alpha+1)} \end{aligned}$$

695

and hence $0 < t \leq (C_1 C_3)^{\frac{1}{1-\alpha}} (\frac{1}{\lambda_k})^{\frac{1+\alpha}{1-\alpha}}$. This implies that $t \to 0$ when $k \to \infty$. By (H_1) and (H_2) ,

$$\begin{split} I(tv) &= \frac{t^2}{2} ||v||_2^2 - \int_{\Omega} \int_0^{tv} g(s) ds \geq \frac{t^2}{2} - C_1 t^{\alpha+1} \int_{\Omega} |v|^{\alpha+1} dx \\ &\geq \frac{t^2}{2} - C_1 C_3 t^{\alpha+1} |v|_2^{\alpha+1} \\ &\geq \frac{t^2}{2} - C_1 C_3 t^{\alpha+1} \left(\frac{|\nabla v|_2}{\sqrt{\lambda_k}}\right)^{\alpha+1} \\ &\geq \frac{t^2}{2} - C_1 C_3 \left(\frac{t}{\sqrt{\lambda_k}}\right)^{\alpha+1}. \end{split}$$

Thus $I(tv) \to 0$ as $k \to \infty$. Therefore there exists $k_0 \ge 0$ such that $I^{\delta} \cap V_{k_0}^{\perp} = \phi$. Let $v_0 \in I^{\delta}$, then since I is an even function, $-v_0 \in I^{\delta}$. If $\{v_0, -v_0\}$ is contractible in I^{δ} , by Krasonalski's result (cf. Lemma 3.2 of Bahri [3]), we can define an odd continuous function $h_1 : S^1 \to I^{\delta}$ such that $h_1(S^1) \subset I^{\delta}$. By induction, if $h_{k_0-1}(S^{k_0-1})$ is contractible, we can construct an odd and continuous function $h_{k_0} : S_0^k \to I^{\delta}$. but since $h_{k_0}(S^{k_0}) \cap V_{k_0}^{\perp} \neq \phi$, this is impossible. Hence, this proves our theorem. \Box

By (H_4) , there exists $c_3 > 0$ such that $\lambda u - c_3 < g(u)$ for all $u \leq 0$, where $0 < \lambda < \lambda_1$. Then there exists a negative solution $\underline{v} \in c^1(\overline{\Omega})$ of the Dirichlet problem

$$-\Delta_x u = \lambda u - c_3.$$

Let $a \ge 1$. If we put $\underline{\mathbf{u}} = a\underline{\mathbf{v}}$, then

$$-\Delta_x \underline{\mathbf{u}} + \underline{\mathbf{u}} = \lambda a \underline{\mathbf{v}} - c_3 + a \underline{\mathbf{v}} < \lambda a \underline{\mathbf{v}} - c_3 < g(\underline{\mathbf{u}}) + h.$$

That is $\underline{\mathbf{u}}$ is a strict subsolution of (P).

Lemma 3.5. For any $\delta < 0$, there exists $\delta_1, \delta_2 < 0$ such that $\delta < \delta_1 < \delta_2 < 0$ and the interval $[\delta_1, \delta_2]$ contains no critical point of *I*.

Proof. Let $\delta_0 < 0$ and suppose contrary that there exists no interval in $(\delta_0, 0)$ satisfying the condition. Then, for any $\delta_0 < \delta < 0$, there exists a sequence $\{u_n\} \subset V$ such that $\nabla I(u_n) = 0$; i.e., $-\Delta u_n + u_n = g(u_n)$ and $\lim_{n \to \infty} I(u_n) = \delta$.

Then, by (H_2) , we have

$$\delta = \lim_{n \to \infty} I(u_n) = \lim_{n \to \infty} \left(\frac{1}{2} ||u_n||_2^2 - \int_\Omega \int_0^{u_n(x)} g(t) dt dx \right)$$
$$\geq \lim_{n \to \infty} \left(\frac{1}{2} ||u_n||_2^2 - \frac{C_1}{1+\alpha} |u|_{1+\alpha}^{1+\alpha} \right).$$

Hence $\{u_n\}$ is bounded in $W^{1,2}(\Omega)$ and hence bounded in V. Therefore there exists a subsequence, say again $\{u_n\}$, such that $\{u_n\}$ converges to $u \in V$ strongly in H and weakly in V.

Since g is Lipschitz continuous and

$$||u_m - u_n||_2^2 \le |g(u_m) - g(u_n)|_2 |u_m - u_n|_2 \le L|u_m - u_n|_2$$

for some constant L > 0, $\{u_n\}$ converges to u strongly in V. Therefore, we have $\nabla I(u) = 0$ and $I(u) = \delta$. This is impossible and completes our assertion. \Box

Lemma 3.6. Let $\delta_0 < 0$ and δ_1, δ_2 be constants, $\delta_0 < \delta_1 < \delta_2 < 0$, satisfying the assertion of Lemma 3.5. Then there exists m_0 such that, for each $h \in C^1(\bar{Q}_T)$ with $|h|_{C^1(\bar{Q}_T)} < m_0$, if v is the solution of (I) with $v(0) \in I^{\delta}$ for some $\delta \in [\delta_1, \delta_2]$, then $v(t) \in I^{\delta}$ for $t \ge 0$.

Proof. Let δ_0 such that $I(\epsilon\phi_1) < \delta_0$. Let δ_1, δ_2 be constants such that $\delta_0 < \delta_1 < \delta_2 < 0$ and satisfying the assertion of Lemma 3.5. Then we define $\tilde{m}_0 = \inf\{||\nabla I(v)||_* : v \in I^{\delta_2} \setminus I^{\delta_1}\}$, then we have $\tilde{m}_0 > 0$. We put $m_0 = \tilde{m}_0/|\Omega|^{1/2}$. Now let $h \in C^1(\bar{Q}_T)$ with $|h|_{C^1(\bar{Q}_T)} < m_0$. Suppose $\delta \in [\delta_1, \delta_2]$, $v(0) \in I^{\delta}$ and $v(t) \in I^{\delta_2}$ on an interval $[0, t_{v(0)}]$. From the definition of m_0 , we have that for $t \in [0, t_{v(0)}]$, using the Holder inequality,

$$\begin{split} I(v(t)) - I(v(0)) &= \int_0^t \nabla I(v(s)) \cdot \frac{dv}{ds} \\ &\leq \int_0^t (-||\nabla I(v)||_*^2 + ||h(s)||||\nabla I(v)||_*) \\ &\leq \int_0^t ||\nabla I||_* (-||\nabla I||_* + ||h(s)||) < 0. \end{split}$$

Then we have I(v(t)) < I(v(0)). Hence, we have that $v(t) \in I^{\delta}$ for all $t \ge 0$. This completes our assertion.

Theorem. There exists $m_0 > 0$ such that for each $h \in C^1(\bar{Q}_T)$ with $|h|_{C^1(\bar{Q}_T)} < m_0$, there exists a periodic solution u_2 in $V \setminus [\epsilon \phi_1, \bar{u}]$.

Proof. Let δ_0 , m_0 be as in Lemma 3.5. Let u_1 be the solution of (P) obtained in Lemma 3.2.

Suppose there in no fixed point of S in $V \setminus [\epsilon \phi_1, \bar{u}]$. Let δ_0, δ_2 be constants such that $\delta_0 < \delta_1 < \delta_2 < 0$ satisfying the assertion of Lemma 3.5. We recall Lemma 3.6. Since $\epsilon \phi_1 \in I^{\delta_0}$ and $u^{(1)} = \lim_{n \to \infty} u_n^{(1)} = \lim_{n \to \infty} S^n(\epsilon \phi_1)$, we find that $u^{(1)} \in I^{\delta_1}$. Let $\epsilon > 0$ be such that $\delta_1 + 2\epsilon < \delta_2$. Then, by (3.1), there exists n_0 such that for all $n \ge n_0$, such that

$$u_n^{(1)}, u_n^{(2)} \in I^{\delta_1 + \epsilon/2}$$

and

(3.2)
$$\left| \int_{\Omega} G(v) dx - \int_{\Omega} G(z) dx \right| < \epsilon \text{ for all } v, z \in [u_n^{(1)}, u_n^{(2)}].$$

Since $||\cdot||_2^2$ is a convex function, by (3.2), $I(\alpha v + (1-\alpha)u_n^{(1)}) < \delta_1 + 2\epsilon$ for all $v \in [u_n^{(1)}, u_n^{(2)}] \cap I^{\delta_1 + \epsilon}$ and $\alpha \in [0, 1]$, and hence $[u_n^{(1)}, u_n^{(2)}] \cap I^{\delta_1 + \epsilon}$ is star convex

WAN SE KIM

with respect to $u_n^{(1)}$ in $I^{\delta_1+2\epsilon}$. Therefore, for any sufficiently small r > 0,

(3.3)
$$[v, z] \cap I^{\delta_1 + \epsilon}$$
 is cotractible in I^{δ_2} ,

where $v, z \in C_0^1(\bar{\Omega})$ such that $||v - u_n^{(1)}||_2 < r$ and $||z - u_n^{(2)}||_2 < r$. By Lemma 3.4, there exist m > 0 and a continuous function $h: S^m \to I^{\delta_2}$ such that $h(S^m)$ is not contractible in I^{δ_2} . Since $C_0^1(\bar{\Omega}) \cap I^{\delta_2}$ is dense in I^{δ_2} , we may have $h(S^m) \subset C_0^1(\overline{\Omega}) \cap I^{\delta_2}$. Let u_z be the solution of (I) with $u_z(0) = h(z), z \in S^m$. By choosing b > 0 sufficiently large in the definition of \tilde{u} , we have another strict supersolution $\bar{u} > \tilde{u}$ such that $v < \bar{u}$ for all $v \in h(S^m)$. Similarly, by choosing a > 0 in the definition of $\underline{\mathbf{u}}$, we have that $\underline{\mathbf{u}} < \epsilon \phi_1$ and $\underline{\mathbf{u}} < v$ for all $v \in h(S^m)$. We recall that $\underline{\mathbf{u}}$ and $\overline{\bar{u}}$ are strict sub and supersolution of (I), respectively and that $\underline{u} < \epsilon \phi_1, \tilde{u} < \overline{u}$. Since S has no fixed point in $V \setminus [\epsilon \phi_1, \tilde{u}]$, we have that $S^n(\underline{u}) \to u^{(1)}$ and $S^n(\bar{u}) \to u^{(2)}$ as $n \to \infty$. Therefore, there exists $n \ge n_0$ such that $||S^n(\underline{\mathbf{u}}) - u_n^{(1)}||_2 < r$ and $||S^{n}(\bar{u}) - u_{n}^{(2)}||_{2} < r.$ Since $S^{n}(\underline{u}) \le u_{z}(nT) \le S^{n}(\bar{u})$ for all $z \in S^{m}$, by (3,3), $\{u_z(nT): z \in S^m\}$ is contractible in I^{δ_2} .

By Lemma 3.6, we can define a homotopy

$$\rho: [0, nT] \times h(S^m) \to C_0^1(\Omega) \cap I^{\delta_2}$$

by

$$o(s, h(z)) = u_z(s)$$
 for $0 \le s \le nT$ and $z \in S^m$.

Then $h(S^m)$ is contractible in I^{δ_2} . This is a contraction. Hence, S has a fixed point u_2 in $V \setminus [\epsilon \phi_1, \tilde{u}]$. This proves assertion. \square

References

- [1] H. Amann, Periodic solutions of semilinear parabolic equations, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), pp. 1–29, Academic Press, New York, 1978.
- A. Ambrosetti, H. Brezis, and G. Cerami, Combined effects of concave and convex [2]nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543.
- [3] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1-32.
- [4] H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64.
- [5] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.
- N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equation, [6] Proc. Amer. Math. Soc. 106 (1989), no. 1, 107-114.
- [7] N. Hirano and W. S. Kim, Existence of stable and unstable solutions for semilinear parabolic problems with a jumping nonlinearity, Nonlinear Anal. 26 (1996), no. 6, 1143-1160.
- [8] W. S. Kim, Multiple existence of periodic solutions for semilinear parabolic equations with large source, Houston J. Math. 30 (2004), no. 1, 283-295.
- [9] _____, Multiple existence of periodic solutions for semilinear parabolic equations with weak nonlinear term, submitted.

- [10] J. C. N. Padua, E. A. B. Silva, and S. H. M. Soares, Pssitive solutions of critical semilinear problems involving a sublinear term at the origin, Indina Univ. J. (to appear)
- [11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
- [12] H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

Department of Mathematics Hanyang University Seoul 133-791, Korea *E-mail address*: wanskim@hanyang.ac.kr