EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS WITH SUBLINEAR GROWTH NONLINEARITIES

Wan Se Kim

Abstract

In this paper, we establish a multiple existence result of T periodic solutions for the semilinear parabolic boundary value problem with sublinear growth nonlinearities. We adapt sub-supersolution scheme and topological argument based on variational structure of functionals.

1. Introduction

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a bounded domain with smooth boundary ∂u. In this paper, we are concerned with the multiple existence result of T-periodic solutions for the semilinear parabolic boundary value problem
$(P) \quad\left\{\begin{aligned} u_{t}-\triangle_{x} u+u & =g(u)+h(t, x) & & \text { in }(0, T) \times \Omega, \\ u & =0 & & \text { on }(0, T) \times \partial \Omega, \\ u(0) & =u(T) & & \text { in } \bar{\Omega} .\end{aligned}\right.$
We assume $u=u(t, x), g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $h: \mathbb{R} \times \bar{\Omega} \rightarrow \mathbb{R}$ is a continuous function which is T-periodic with respect to the first variable and $h>0$ on $\mathbb{R} \times \Omega$. There are many results for the multiple existence of T-periodic solutions for seminear parabolic equations with this type of nonlinearity in [6, $7,8,9]$, and for elliptic equations also in $[2,4,10]$.

Here, we denote Q_{T} the open set $(0, T) \times \Omega$. For $q \geq 1$, we denote by $|\cdot|_{q}$ and $\|\cdot\|_{q}$ the norms of $L^{q}(\Omega)$ and $W^{1, q}(\Omega)$, respectively. \| \| \| stands for the norm of $H_{0}^{1}(\Omega)$. We put $V=H_{0}^{1}(\Omega), H=L^{2}(\Omega)$. The norm of the dual space V^{*} of V is denoted by $\|\cdot\|_{*} .\langle\cdot, \cdot\rangle$ stands for the paring of V and V^{*}. A function $u \in C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ is said to be a solution of (P) if u satisfies (P). Here, we assume
$\left(H_{1}\right) g$ is Lipschitz continuous, nondecreasing, odd function and $g(0)=0$,

[^0]$\left(H_{2}\right)$ there exist $C_{1}>0$ and $0<\alpha<1$ such that $|g(u)| \leq C_{1}|u|^{\alpha}$ on \mathbb{R}, $\left(H_{3}\right)$ there exists $C_{2}>0$ such that
$$
\liminf _{|u| \rightarrow 0} \frac{G(u)}{|u|} \geq C_{2}
$$
where $G(u)=\int_{0}^{u} g(s) d s$,
$\left(H_{4}\right)$
$$
\lim _{|u| \rightarrow \infty} \frac{g(u)}{u}<\lambda_{1}
$$
$\left(H_{5}\right)$
$$
\lambda_{1}<\lim _{|u| \rightarrow 0} \frac{g(u)}{u}
$$
where we denote by $\lambda_{1}<\lambda_{2} \leq \cdots$ the eigenvalues of the problem
$$
-\triangle u=\lambda u, \quad u \in H_{0}^{1}(\Omega)
$$
and by ϕ_{1} the normalized eigenfunction corresponding to λ_{1}.
Such a function exists; for example, we first fix a smooth function $\phi:(-\infty, \infty)$ $\rightarrow[0,1]$ such that $\phi^{\prime}(t) \leq a$, and
\[

\phi(t)= $$
\begin{cases}0 & \text { for } t \in(-\infty,-1] \cup[1, \infty) \\ 1 & \text { for } t \in\left[-\frac{1}{2}, \frac{1}{2}\right]\end{cases}
$$
\]

Let $n \geq 1$ and $t_{n}^{ \pm}$be the numbers such that $t_{n}^{-}<0<t_{n}^{+}$and $g\left(2 t_{n}^{ \pm}\right)=2 n t_{n}^{ \pm}$. We put

$$
g_{n}(t)= \begin{cases}n \phi_{n}^{+}(t) t+\left(1-\phi_{n}^{+}(t)\right) h(t) & \text { for } t \geq 0 \\ n \phi_{n}^{-}(t) t+\left(1-\phi_{n}^{-}(t)\right) h(t) & \text { for } t \leq 0\end{cases}
$$

where $h(t)=|t|^{\alpha-1} t, \phi_{n}^{+}(t)=\phi\left(\frac{t}{2 t_{n}^{+}}\right)$and $\phi_{n}^{-}(t)=\phi\left(\frac{-t}{2 t_{n}^{-}}\right)$. Then we have that $g_{n}(t)=n t$ on $\left[t_{n}^{-}, t_{n}^{+}\right]$and $g_{n}(t)=h(t)$ on $\left(-\infty, 2 t_{n}^{-}\right) \cup\left(2 t_{n}^{+}, \infty\right)$. For Lipschitz continuity of g_{n}, let consider the case that $t>0$. From the definition, we have $g_{n}(t)=n t$ on $\left[0, t_{n}^{+}\right]$. On the other hand, we have that for $t \in\left[t_{n}^{+}, 2 t_{n}^{+}\right]$,

$$
\begin{aligned}
g_{n}^{\prime}(t) & =n\left(\left(\phi_{n}^{+}(t)\right)^{\prime} t+\phi_{n}^{+}(t)\right)+\left(1-\phi_{n}^{+}(t)\right) h^{\prime}(t)-\left(\phi_{n}^{+}(t)\right)^{\prime} h(t) \\
& \leq n\left(\frac{a t}{2 t_{n}^{+}}+1\right)+\frac{\alpha}{t^{1-\alpha}}+\frac{a t}{2 t_{n}^{+}} t^{\alpha} \\
& \leq n\left(\frac{a}{2}+1\right)+\frac{\alpha}{\left(t_{n}^{+}\right)^{1-\alpha}}+\frac{a}{2}\left(2 t_{n}^{+}\right)^{\alpha} .
\end{aligned}
$$

Then we find $g_{n}^{\prime}(t) \leq C \max \left\{n, h^{\prime}(t)\right\}$ for some $C>0$. Moreover recalling that $n\left(2 t_{n}^{+}\right)^{1-\alpha} \cong 1$, we find that $h^{\prime}(t) \leq C n$ on $\left[t_{n}^{+}, 2 t_{n}^{+}\right]$for some $C>0$, and hence each g_{n} is Lipschitz continuous on \mathbb{R}. Therefore $\left(H_{1}\right)-\left(H_{5}\right)$ follows from the definition.

2. Preliminary results

Let us consider a initial boundary value problem associated with (P)

$$
\left\{\begin{align*}
u_{t}-\triangle_{x} u+u & =g(u)+h & & \text { in }(0 . \infty) \times \Omega \tag{I}\\
u(t) & =0 & & \text { on }(0, \infty) \times \Omega \\
u(0) & =u_{0} & & \text { in } \partial \Omega,
\end{align*}\right.
$$

where $u_{0} \in L^{2}(\Omega)$ and $h \in C^{1}\left(\bar{Q}_{T}\right)$. We denote by $t\left(u_{0}\right)$ the number such that [$\left.0, t\left(u_{0}\right)\right)$ is the maximal interval for $u(t)$ to exist. If u is a solution of problem (I) on $\left[0, t\left(u_{0}\right)\right), u$ can be represented by the integral form

$$
\begin{equation*}
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s)(g(u(s))-u(s)+h(s, x)) d s \tag{2.1}
\end{equation*}
$$

for $0<t<t\left(u_{0}\right)$. Here, $\{S(t)\}$ is the semigroup of linear operators generated by $-\triangle_{x}$. It is known that for each $q \geq 2$, there exists $c(q)>0$ satisfying

$$
\begin{equation*}
\|S(t) f\|_{q} \leq c(q) t^{-1 / 2}|f|_{q} \quad \text { for all } f \in L^{q}(\Omega) \text { and } t>0 \tag{2.2}
\end{equation*}
$$

(cf. Amann [1], Tanabe [12]). If we set $X_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}) ; u \geq 0\right.$ on $\left.\Omega\right\}$, then X_{+}is a closed cone in $C_{0}^{1}(\bar{\Omega})$. We employ the standard order in $C_{0}^{1}(\bar{\Omega})$ as

$$
u \geq v \Leftrightarrow u-v \in X_{+}, \quad u>v \Leftrightarrow u \geq v, u \neq v, \quad u \gg v \Leftrightarrow u-v \in \operatorname{int} X_{+} .
$$

For each $u, v \in C_{0}^{1}(\bar{\Omega})$, we put

$$
[v, u]=\left\{w \in C_{0}^{1}(\bar{\Omega}) ; v \leq w \leq u\right\} .
$$

A mapping $S:[u, v] \rightarrow C_{0}^{1}(\bar{\Omega})$ is said to be order preserving if $S x \gg S y$ for $x, y \in[u, v]$ with $x>y$. Here, we denote by S the Poincare mapping associated with problem (I). That is $S u_{0}=u(T), u_{0} \in H$. It is obvious that the Poincare mapping S is well defined only when $t\left(u_{0}\right)>T$. It follows from the parabolic maximal principle that S is strictly monotone with respect to the order defined above. That is, if $u>v$ in $C_{0}^{1}(\bar{\Omega})$ and $S u, S v$ exist, then $S u \gg S v$. A function $u \in C^{1,2}((0 . T) \times \Omega) \cap C^{0,1}((0, T) \times \bar{\Omega})$ is called subsolution (cf. Hess [5]) for the T-periodic problem (I) if

$$
\left\{\begin{aligned}
u_{t}-\triangle_{x} u+u & \leq g(u)+h & & \text { in }(0, \infty) \times \Omega \\
u & =0 & & \text { on }(0, \infty) \times \partial \Omega \\
u(0) & =u_{0} & & \text { in } \Omega .
\end{aligned}\right.
$$

A subsolution is said to be a strict subsolution if it is not a solution of (I). Similarly, a supersolution and strict supersolution are defined by the inequality sign, correspondingly.

3. Multiplicity result

We set

$$
C\left([0, T] ; u_{0}, H\right)=\left\{u \in C([0, T], H) ; u(0, x)=u_{0}(x) \text { on } \Omega\right\}
$$

for each $u_{0} \in H$. For each $u_{0} \in H$, we define a mapping $K_{u_{0}}: C\left([0, T] ; u_{0}, H\right)$ $\rightarrow C\left([0, T] ; u_{0}, H\right)$ by

$$
\left(K_{u_{0}} u\right)(t)=S(t) u_{0}+\int_{0}^{t} S(t-s)(g(u(s))-u(s)+h(s, x)) d s
$$

for each $u \in C\left([0, T] ; u_{0}, H\right)$. Then we have:
Lemma 3.1. For each $u_{0} \in H, K_{u_{0}}$ is compact and has a unique fixed point in $v_{u_{0}} \in C\left([0, T] ; u_{0}, H\right)$.

Proof. See the proofs of Theorems 1.7 and 2.1 in Chapter 6 of Pazy [11].
Remark. Since $S u_{0}=v_{u_{0}}(T)$ and $v_{u_{0}}$ is a solution of $(I), v_{u_{0}}$ is a periodic solution of (I).

By $\left(H_{5}\right)$, there exists $\mu_{1}>0$ such that $\frac{g(u)}{u}>\lambda_{1}$ for all $|u| \leq \mu_{1}$.
Let $0<\epsilon<1$ be such that $h-\epsilon \phi_{1}>0$ and $\left|\epsilon \phi_{1}\right|_{\infty} \leq \mu_{1}$ on Ω. Then we have

$$
-\Delta\left(\epsilon \phi_{1}\right)+\epsilon \phi_{1}=\epsilon \lambda_{1} \phi_{1}+\epsilon \phi_{1}<g\left(\epsilon \phi_{1}\right)+h \text { on } \Omega .
$$

Hence $\epsilon \phi_{1}$ is a strict subsolution of (I). Let $0<\lambda<\lambda_{1}$. By $\left(H_{4}\right)$, there exists $\mu_{2}>0$ such that $g(u)<\lambda u$ for all $|u| \geq \mu_{2}$. Put $c=\max \left\{g(u): 0 \leq u \leq \mu_{2}\right\}$. Since $\lambda<\lambda_{1}$. Dirichlet boundary value problem

$$
-\Delta_{x} u=\lambda u+c+h
$$

has a solution $v \in H_{0}^{1}(\Omega)$. Note that $c+h>0$, we have that $v \in C^{1}(\bar{\Omega})$ and $v>0$ on Ω. Let $b>0$ and put $\tilde{u}=b \phi_{1}+v$. Then

$$
\begin{aligned}
\lambda v(x)+\lambda_{1} b \phi_{1}(x) & >\lambda\left(v(x)+b \phi_{1}(x)\right) \\
& >g\left(v(x)+b \phi_{1}(x)\right) \text { for } x \in \Omega \text { with } \tilde{u}(x) \geq \mu_{2}
\end{aligned}
$$

and $c>g(\tilde{u}(x))$ for $x \in \Omega$ with $\tilde{u}(x)<\mu_{2}$.
Hence, we have

$$
-\Delta_{x} \tilde{u}+\tilde{u} \geq \lambda v+\lambda_{1} b \phi_{1}+c+h>g(\tilde{u})+h .
$$

Therefore, \tilde{u} is a strict supersolution of (I). Recall that $\partial \phi_{1} / \partial n<0$ and $\partial v / \partial n<0$ on $\partial \Omega$ by the maximal principle. Then we can choose $b>0$ sufficiently large so that $\epsilon \phi_{1} \ll \tilde{u}$ on Ω. We know that S is strongly order preserving on $\left[\epsilon \phi_{1}, \tilde{u}\right]$ and

$$
S\left[\epsilon \phi_{1}, \tilde{u}\right] \subset\left[\epsilon \phi_{1}, \tilde{u}\right] .
$$

We know that $S\left[\epsilon \phi_{1}, \tilde{u}\right]$ is relatively compact in $C_{0}^{1}(\bar{\Omega})$ (cf. Proposition 21.2 of [5]). Hence, by Theorem 4.2 of [5], we have two sequences $u_{n}^{(1)} \equiv S^{n}(\epsilon \phi)$ and $u_{n}^{(2)} \equiv S^{n}(\tilde{u})$ which converges to a fixed point $u^{(1)}$ and $u^{(2)}$ of S as $n \rightarrow \infty$, respectively and $\epsilon \phi_{1}<u^{(1)} \leq u^{(2)}<\tilde{u}$. From Remark 21.3 of [5], the problem (P) has a solution $u_{1} \in C^{1,2}([0, T] \times \tilde{\Omega})$ with $u_{1}(0)=u_{1}(T)=u^{(i)}$ for $i=1,2$ (cf. Lemma 20.1 of [5]). Therefore we have:

Lemma 3.2. For each $h \in C^{1}\left(\bar{Q}_{T}\right)$ and $h>0$, there exist a solution $u_{1} \in$ $C^{1,2}([0, T] \times \bar{\Omega})$ of (P) such that $\epsilon \phi_{1}<u_{1}(t)<\bar{u}$ on $[0, T]$.

Next, we prove the existence of the second solution.
By Lemma 3.1, we have:
Lemma 3.3. If $\lim _{n \rightarrow \infty}\left|u_{n}^{(1)}-u_{n}^{(2)}\right|_{c_{0}^{1}(\bar{\Omega})}>0$, then we have two solutions u_{1}, u_{2} of (P) such that $\epsilon \phi_{1}<u_{1}(0)=u^{(1)}<u_{2}(0)=u^{(2)}<\bar{u}$.

Proof. cf. Lemma 3.1 and Remark 21.3 in [5].
To complete our assertion, we assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|u_{n}^{(1)}-u_{n}^{(2)}\right|_{c_{0}^{1}(\bar{\Omega})}=0 \tag{3.1}
\end{equation*}
$$

Now, we let $I: V \rightarrow R$ be a functional defined by

$$
I(v)=\frac{1}{2}\|v\|_{2}^{2}-\int_{\Omega} G(v) d x \text { for } v \in V .
$$

By I^{c}, we denote the level set $I^{c}=\{v \in V: I(v) \leq c\}$. From the definition of I and $\left(H_{2}\right)$, we can see that $\lim _{\|v\|_{2} \rightarrow \infty} I(v)=\infty$. Thus we have that

$$
-\infty<m_{1}=\min \{I(v): v \in V\}
$$

$\left(H_{3}\right)$ implies that for any nonzero $v \in V$, there is sufficiently small $t>0$ that $I(t v)<0$. That is $m_{1}<0$.

Lemma 3.4. For any $\delta \in\left[m_{1}, 0\right]$, there exist $m \geq 1$ and a continuous function $h: S^{m} \rightarrow I^{\delta}$ such that $h\left(S^{m}\right)$ is not contractible in I^{δ}, where S^{m} denotes the unit sphere in R^{m}.

Proof. We put $V_{k}=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right\}$. Fix $\delta \in\left[m_{1}, 0\right]$. Let $v \in V$ with $\|v\|_{2}=1$. From $\left(H_{1}\right)$, we have that the mapping $s \rightarrow I(s v)$ is decreases on interval $[0, t]$, where $t>0$ satisfies

$$
I(t v)=\min \{I(s v): s \geq 0\}
$$

and increases on $[t, \infty)$. From the definition of I, we have, by $\left(H_{2}\right)$,

$$
t^{2}\|v\|_{2}^{2}=\int_{\Omega} g(t v) t v d x \leq C_{1} \int_{\Omega} t^{\alpha+1}|v|^{\alpha+1} d x
$$

Suppose that $v \in V_{k-1}^{\perp}$ for some $k \geq 2$. Since $|v|_{\alpha+1}^{\alpha+1} \leq C_{3}|v|_{2}^{\alpha+1}$ for some $C_{3}>0$ and $\lambda_{k}|v|_{2}^{2} \leq|\nabla v|_{2}^{2}$, we have that

$$
\begin{aligned}
t^{1-\alpha}\|v\|_{2}^{2} & \leq C_{1}|v|_{\alpha+1}^{\alpha+1} \\
& \leq C_{1} C_{3}|v|_{2}^{\alpha+1} \\
& \leq C_{1} C_{3}\left(\frac{1}{\lambda_{k}}\right)^{\alpha+1}\|v\|_{2}^{2(\alpha+1)}
\end{aligned}
$$

and hence $0<t \leq\left(C_{1} C_{3}\right)^{\frac{1}{1-\alpha}}\left(\frac{1}{\lambda_{k}}\right)^{\frac{1+\alpha}{1-\alpha}}$. This implies that $t \rightarrow 0$ when $k \rightarrow \infty$. By $\left(H_{1}\right)$ and $\left(H_{2}\right)$,

$$
\begin{aligned}
I(t v)=\frac{t^{2}}{2}\|v\|_{2}^{2}-\int_{\Omega} \int_{0}^{t v} g(s) d s & \geq \frac{t^{2}}{2}-C_{1} t^{\alpha+1} \int_{\Omega}|v|^{\alpha+1} d x \\
& \geq \frac{t^{2}}{2}-C_{1} C_{3} t^{\alpha+1}|v|_{2}^{\alpha+1} \\
& \geq \frac{t^{2}}{2}-C_{1} C_{3} t^{\alpha+1}\left(\frac{|\nabla v|_{2}}{\sqrt{\lambda}}\right)^{\alpha+1} \\
& \geq \frac{t^{2}}{2}-C_{1} C_{3}\left(\frac{t}{\sqrt{\lambda}}\right)^{\alpha+1}
\end{aligned}
$$

Thus $I(t v) \rightarrow 0$ as $k \rightarrow \infty$. Therefore there exists $k_{0} \geq 0$ such that $I^{\delta} \cap V_{k_{0}}^{\perp}=\phi$. Let $v_{0} \in I^{\delta}$, then since I is an even function, $-v_{0} \in I^{\delta}$. If $\left\{v_{0},-v_{0}\right\}$ is contractible in I^{δ}, by Krasonalski's result (cf. Lemma 3.2 of Bahri [3]), we can define an odd continuous function $h_{1}: S^{1} \rightarrow I^{\delta}$ such that $h_{1}\left(S^{1}\right) \subset I^{\delta}$. By induction, if $h_{k_{0}-1}\left(S^{k_{0}-1}\right)$ is contractible, we can construct an odd and continuous function $h_{k_{0}}: S_{0}^{k} \rightarrow I^{\delta}$. but since $h_{k_{0}}\left(S^{k_{0}}\right) \cap V_{k_{0}}^{\perp} \neq \phi$, this is impossible. Hence, this proves our theorem.

By $\left(H_{4}\right)$, there exists $c_{3}>0$ such that $\lambda u-c_{3}<g(u)$ for all $u \leq 0$, where $0<\lambda<\lambda_{1}$. Then there exists a negative solution $\underline{v} \in c^{1}(\bar{\Omega})$ of the Dirichlet problem

$$
-\Delta_{x} u=\lambda u-c_{3} .
$$

Let $a \geq 1$. If we put $\underline{\mathrm{u}}=a \underline{\mathrm{v}}$, then

$$
-\Delta_{x} \underline{\mathrm{u}}+\underline{\mathrm{u}}=\lambda a \underline{\mathrm{v}}-c_{3}+a \underline{\mathrm{v}}<\lambda a \underline{\mathrm{v}}-c_{3}<g(\underline{\mathrm{u}})+h .
$$

That is \underline{u} is a strict subsolution of (P).
Lemma 3.5. For any $\delta<0$, there exists $\delta_{1}, \delta_{2}<0$ such that $\delta<\delta_{1}<\delta_{2}<0$ and the interval $\left[\delta_{1}, \delta_{2}\right]$ contains no critical point of I.
Proof. Let $\delta_{0}<0$ and suppose contrary that there exists no interval in $\left(\delta_{0}, 0\right)$ satisfying the condition. Then, for any $\delta_{0}<\delta<0$, there exists a sequence $\left\{u_{n}\right\} \subset V$ such that $\nabla I\left(u_{n}\right)=0$; i.e., $-\Delta u_{n}+u_{n}=g\left(u_{n}\right)$ and $\lim _{n \rightarrow \infty} I\left(u_{n}\right)=$ δ.
Then, by $\left(H_{2}\right)$, we have

$$
\begin{aligned}
\delta=\lim _{n \rightarrow \infty} I\left(u_{n}\right) & =\lim _{n \rightarrow \infty}\left(\frac{1}{2}\left\|u_{n}\right\|_{2}^{2}-\int_{\Omega} \int_{0}^{u_{n}(x)} g(t) d t d x\right) \\
& \geq \lim _{n \rightarrow \infty}\left(\frac{1}{2}\left\|u_{n}\right\|_{2}^{2}-\frac{C_{1}}{1+\alpha}|u|_{1+\alpha}^{1+\alpha}\right)
\end{aligned}
$$

Hence $\left\{u_{n}\right\}$ is bounded in $W^{1,2}(\Omega)$ and hence bounded in V. Therefore there exists a subsequence, say again $\left\{u_{n}\right\}$, such that $\left\{u_{n}\right\}$ converges to $u \in V$ strongly in H and weakly in V.

Since g is Lipschitz continuous and

$$
\left\|u_{m}-u_{n}\right\|_{2}^{2} \leq\left|g\left(u_{m}\right)-g\left(u_{n}\right)\right|_{2}\left|u_{m}-u_{n}\right|_{2} \leq L\left|u_{m}-u_{n}\right|_{2}
$$

for some constant $L>0,\left\{u_{n}\right\}$ converges to u strongly in V. Therefore, we have $\nabla I(u)=0$ and $I(u)=\delta$. This is impossible and completes our assertion.

Lemma 3.6. Let $\delta_{0}<0$ and δ_{1}, δ_{2} be constants, $\delta_{0}<\delta_{1}<\delta_{2}<0$, satisfying the assertion of Lemma 3.5. Then there exists m_{0} such that, for each $h \in C^{1}\left(\bar{Q}_{T}\right)$ with $|h|_{C^{1}\left(\bar{Q}_{T}\right)}<m_{0}$, if v is the solution of (I) with $v(0) \in$ I^{δ} for some $\delta \in\left[\delta_{1}, \delta_{2}\right]$, then $v(t) \in I^{\delta}$ for $t \geq 0$.

Proof. Let δ_{0} such that $I\left(\epsilon \phi_{1}\right)<\delta_{0}$. Let δ_{1}, δ_{2} be constants such that $\delta_{0}<$ $\delta_{1}<\delta_{2}<0$ and satisfying the assertion of Lemma 3.5. Then we define $\tilde{m}_{0}=$ $\inf \left\{\|\nabla I(v)\|_{*}: v \in I^{\delta_{2}} \backslash I^{\delta_{1}}\right\}$, then we have $\tilde{m}_{0}>0$. We put $m_{0}=\tilde{m}_{0} /|\Omega|^{1 / 2}$. Now let $h \in C^{1}\left(\bar{Q}_{T}\right)$ with $|h|_{C^{1}\left(\bar{Q}_{T}\right)}<m_{0}$. Suppose $\delta \in\left[\delta_{1}, \delta_{2}\right], v(0) \in I^{\delta}$ and $v(t) \in I^{\delta_{2}}$ on an interval $\left[0, t_{v(0)}\right]$. From the definition of m_{0}, we have that for $t \in\left[0, t_{v(0)}\right]$, using the Holder inequality,

$$
\begin{aligned}
I(v(t))-I(v(0)) & =\int_{0}^{t} \nabla I(v(s)) \cdot \frac{d v}{d s} \\
& \leq \int_{0}^{t}\left(-\|\nabla I(v)\|_{*}^{2}+\|h(s)\|\|\nabla I(v)\|_{*}\right) \\
& \leq \int_{0}^{t}\|\nabla I\|_{*}\left(-\|\nabla I\|_{*}+\|h(s)\|\right)<0
\end{aligned}
$$

Then we have $I(v(t))<I(v(0))$. Hence, we have that $v(t) \in I^{\delta}$ for all $t \geq 0$. This completes our assertion.

Theorem. There exists $m_{0}>0$ such that for each $h \in C^{1}\left(\bar{Q}_{T}\right)$ with $|h|_{C^{1}\left(\bar{Q}_{T}\right)}$ $<m_{0}$, there exists a periodic solution u_{2} in $V \backslash\left[\epsilon \phi_{1}, \bar{u}\right]$.
Proof. Let δ_{0}, m_{0} be as in Lemma 3.5. Let u_{1} be the solution of (P) obtained in Lemma 3.2.

Suppose there in no fixed point of S in $V \backslash\left[\epsilon \phi_{1}, \bar{u}\right]$. Let δ_{0}, δ_{2} be constants such that $\delta_{0}<\delta_{1}<\delta_{2}<0$ satisfying the assertion of Lemma 3.5. We recall Lemma 3.6. Since $\epsilon \phi_{1} \in I^{\delta_{0}}$ and $u^{(1)}=\lim _{n \rightarrow \infty} u_{n}^{(1)}=\lim _{n \rightarrow \infty} S^{n}\left(\epsilon \phi_{1}\right)$, we find that $u^{(1)} \in I^{\delta_{1}}$. Let $\epsilon>0$ be such that $\delta_{1}+2 \epsilon<\delta_{2}$. Then, by (3.1), there exists n_{0} such that for all $n \geq n_{0}$, such that

$$
u_{n}^{(1)}, u_{n}^{(2)} \in I^{\delta_{1}+\epsilon / 2}
$$

and

$$
\begin{equation*}
\left|\int_{\Omega} G(v) d x-\int_{\Omega} G(z) d x\right|<\epsilon \text { for all } v, z \in\left[u_{n}^{(1)}, u_{n}^{(2)}\right] . \tag{3.2}
\end{equation*}
$$

Since $\|\cdot\|_{2}^{2}$ is a convex function, by (3.2), $I\left(\alpha v+(1-\alpha) u_{n}^{(1)}\right)<\delta_{1}+2 \epsilon$ for all $v \in\left[u_{n}^{(1)}, u_{n}^{(2)}\right] \cap I^{\delta_{1}+\epsilon}$ and $\alpha \in[0,1]$, and hence $\left[u_{n}^{(1)}, u_{n}^{(2)}\right] \cap I^{\delta_{1}+\epsilon}$ is star convex
with respect to $u_{n}^{(1)}$ in $I^{\delta_{1}+2 \epsilon}$. Therefore, for any sufficiently small $r>0$,

$$
\begin{equation*}
[v, z] \cap I^{\delta_{1}+\epsilon} \text { is cotractible in } I^{\delta_{2}}, \tag{3.3}
\end{equation*}
$$

where $v, z \in C_{0}^{1}(\bar{\Omega})$ such that $\left\|v-u_{n}^{(1)}\right\|_{2}<r$ and $\left\|z-u_{n}^{(2)}\right\|_{2}<r$.
By Lemma 3.4, there exist $m>0$ and a continuous function $h: S^{m} \rightarrow I^{\delta_{2}}$ such that $h\left(S^{m}\right)$ is not contractible in $I^{\delta_{2}}$. Since $C_{0}^{1}(\bar{\Omega}) \cap I^{\delta_{2}}$ is dense in $I^{\delta_{2}}$, we may have $h\left(S^{m}\right) \subset C_{0}^{1}(\bar{\Omega}) \cap I^{\delta_{2}}$. Let u_{z} be the solution of (I) with $u_{z}(0)=h(z), z \in S^{m}$. By choosing $b>0$ sufficiently large in the definition of \tilde{u}, we have another strict supersolution $\bar{u}>\tilde{u}$ such that $v<\bar{u}$ for all $v \in h\left(S^{m}\right)$. Similarly, by choosing $a>0$ in the definition of \underline{u}, we have that $\underline{\mathrm{u}}<\epsilon \phi_{1}$ and $\underline{\mathrm{u}}<v$ for all $v \in h\left(S^{m}\right)$. We recall that $\underline{\mathrm{u}}$ and \bar{u} are strict sub and supersolution of (I), respectively and that $\underline{u}<\epsilon \phi_{1}, \tilde{u}<\bar{u}$. Since S has no fixed point in $V \backslash\left[\epsilon \phi_{1}, \tilde{u}\right]$, we have that $S^{n}(\underline{\mathrm{u}}) \rightarrow u^{(1)}$ and $S^{n}(\bar{u}) \rightarrow u^{(2)}$ as $n \rightarrow \infty$. Therefore, there exists $n \geq n_{0}$ such that $\left\|S^{n}(\underline{\mathrm{u}})-u_{n}^{(1)}\right\|_{2}<r$ and $\left\|S^{n}(\bar{u})-u_{n}^{(2)}\right\|_{2}<r$. Since $S^{n}(\underline{\mathrm{u}}) \leq u_{z}(n T) \leq S^{n}(\bar{u})$ for all $z \in S^{m}$, by $(3,3)$, $\left\{u_{z}(n T): z \in S^{m}\right\}$ is contractible in $I^{\delta_{2}}$.

By Lemma 3.6, we can define a homotopy

$$
\rho:[0, n T] \times h\left(S^{m}\right) \rightarrow C_{0}^{1}(\Omega) \cap I^{\delta_{2}}
$$

by

$$
\rho(s, h(z))=u_{z}(s) \text { for } 0 \leq s \leq n T \text { and } z \in S^{m} .
$$

Then $h\left(S^{m}\right)$ is contractible in $I^{\delta_{2}}$. This is a contraction. Hence, S has a fixed point u_{2} in $V \backslash\left[\epsilon \phi_{1}, \tilde{u}\right]$. This proves assertion.

References

[1] H. Amann, Periodic solutions of semilinear parabolic equations, Nonlinear analysis (collection of papers in honor of Erich H. Rothe), pp. 1-29, Academic Press, New York, 1978.
[2] A. Ambrosetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543.
[3] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1-32.
[4] H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64.
[5] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1991.
[6] N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equation, Proc. Amer. Math. Soc. 106 (1989), no. 1, 107-114.
[7] N. Hirano and W. S. Kim, Existence of stable and unstable solutions for semilinear parabolic problems with a jumping nonlinearity, Nonlinear Anal. 26 (1996), no. 6, 11431160.
[8] W. S. Kim, Multiple existence of periodic solutions for semilinear parabolic equations with large source, Houston J. Math. 30 (2004), no. 1, 283-295.
[9] , Multiple existence of periodic solutions for semilinear parabolic equations with weak nonlinear term, submitted.
[10] J. C. N. Padua, E. A. B. Silva, and S. H. M. Soares, Pssitive solutions of critical semilinear problems involving a sublinear term at the origin, Indina Univ. J. (to appear)
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
[12] H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail address: wanskim@hanyang.ac.kr

[^0]: Received August 20, 2007.
 2000 Mathematics Subject Classification. 35K20, 35K55.
 Key words and phrases. multiplicity, periodic solutions, semilinear parabolic equations, sublinear nonlinearity.

 This work was supported by the grant R01-2003-000-11731-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

