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EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS
FOR SEMILINEAR PARABOLIC EQUATIONS
WITH SUBLINEAR GROWTH NONLINEARITIES

WaN SE KiMm

ABSTRACT. In this paper, we establish a multiple existence result of T-
periodic solutions for the semilinear parabolic boundary value problem
with sublinear growth nonlinearities. We adapt sub-supersolution scheme
and topological argument based on variational structure of functionals.

1. Introduction

Let Q@ C R™, n > 2, be a bounded domain with smooth boundary du. In
this paper, we are concerned with the multiple existence result of T-periodic
solutions for the semilinear parabolic boundary value problem

up — ANgpu—+u=g(u) +h(t,z) in (0,T) x £,
(P) u=0 on (0,T) x 09,
u(0) = u(T) in Q.

We assume u = u(t,z), g : R — R is continuous, and h: R x Q@ — R is a
continuous function which is T-periodic with respect to the first variable and
h > 0on R x €. There are many results for the multiple existence of T-periodic
solutions for seminear parabolic equations with this type of nonlinearity in [6,
7, 8, 9], and for elliptic equations also in [2, 4, 10].

Here, we denote Qp the open set (0,T) x Q. For ¢ > 1, we denote by | - |,
and || - ||, the norms of L4(Q2) and W14((Q2), respectively. || - || stands for the
norm of H}(Q2). We put V = H(Q2), H = L?(Q). The norm of the dual space
V* of V is denoted by || - ||«. (-,-) stands for the paring of V and V*. A
function u € C ([0, T]; H} (Q2)) N C*([0, T]; L?(2)) is said to be a solution of (P)
if u satisfies (P). Here, we assume

(Hy) g is Lipschitz continuous, nondecreasing, odd function and g(0) = 0,
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(Hz) there exist C; > 0 and 0 < a < 1 such that |g(u)| < C1|u|* on R,
(H3) there exists Cy > 0 such that

lim inf Glu)

|u|—0 |u|

> CQ;

lim M

lu| =00 U

< )\lu

A1 < lim M,
lu| -0 u

where we denote by A\; < Ao < - - - the eigenvalues of the problem
~Au=Xu, u€ H}Q)

and by ¢; the normalized eigenfunction corresponding to A;.

Such a function exists; for example, we first fix a smooth function ¢ : (—o0, 00)
— [0, 1] such that ¢'(t) < a, and

o= iyt

Let n > 1 and & be the numbers such that t,; < 0 < ¢} and g(2tF) = 2ntt.
We put

(1) not ()t + (1 — ¢ (¢)h(t) fort >0
P T o @+ (1= s @)h(t) fort <o,
where h(t) = [t|*'t, ¢ (t) = ¢(=5) and ¢, (1) = ¢(=L). Then we have that

2t.4 2t;,
gn(t) =nton [t t}] and g,(t) = h(t) on (—oo,2t, ) U (2t;}, 00). For Lipschitz
continuity of g,, let consider the case that ¢ > 0. From the definition, we have

gn(t) = nt on [0,£}]. On the other hand, we have that for ¢ € [t;}, 2t;7],
gn(t) = (& (1)t + &y (1) + (1 = &y (1)) (1) — (51 (1)) h(t)

§n<at+1)+ @, e

2t} tlma = ot
a a
<nf-= 1) —(2t)e.

Then we find ¢/,(t) < Cmax {n,h'(t)} for some C > 0. Moreover recalling that
n(2t5)17* 2 1, we find that A'(t) < Cn on [t} 2t] for some C' > 0, and hence
each g, is Lipschitz continuous on R. Therefore (H;)-(Hs) follows from the
definition.



EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS 693

2. Preliminary results
Let us consider a initial boundary value problem associated with (P)
ur — DNput+u=g(u)+h in (0.00) x
(I) u(t) =0 on (0,00) x Q
u(0) = ug in 092,
where ug € L?(Q2) and h € C1(Qr). We denote by t(ug) the number such that

[0,t(ug)) is the maximal interval for u(t) to exist. If u is a solution of problem
(I) on [0,%(ug)), u can be represented by the integral form

(2.1) u(t) = S(t)ug + /0 S(t—8)(g(u(s)) —u(s) + h(s,x))ds

for 0 < t < t(up). Here, {S(t)} is the semigroup of linear operators generated
by —A,. It is known that for each ¢ > 2, there exists ¢(q) > 0 satisfying

(2.2) 1S(t)fllq < clq)t™'/?|f|, forall fe LY(Q) and t > 0

(cf. Amann [1], Tanabe [12]). If we set Xy = {u € Cj(Q);u > 0 on Q}, then
X is a closed cone in C§(£2). We employ the standard order in C§(£2) as

u>vesu—veXy, u>Dveu>v,uFv, uSveu—uvEeintX;.
For each u,v € C}(2), we put
[v,u] = {w € C3(Q);v < w < u}.

A mapping S : [u,v] — C3(Q) is said to be order preserving if Sz > Sy for
x,y € [u,v] with z > y. Here, we denote by S the Poincare mapping associated
with problem (I). That is Sug = u(T),up € H. It is obvious that the Poincare
mapping S is well defined only when ¢(ug) > T'. It follows from the parabolic
maximal principle that S is strictly monotone with respect to the order defined
above. That is, if u > v in C§(Q) and Su, Sv exist, then Su > Sv. A function
u € CH2((0.7) x Q) N C%L((0,T) x Q) is called subsolution (cf. Hess [5]) for
the T-periodic problem (I) if

ug— DNgu+u<glu)+h in (0,00) x Q
u=0 on (0,00) x 0N
u(0) = ug in Q.

A subsolution is said to be a strict subsolution if it is not a solution of (I).
Similarly, a supersolution and strict supersolution are defined by the inequality
sign, correspondingly.

3. Multiplicity result
We set
C([0,T);uo, H) = {u € C([0,T], H); u(0,z) = ug(x) on Q}
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for each ug € H. For each ug € H, we define a mapping K,,, : C([0,T7]; uo, H)
— C([0,T;uo, H) by

(Kuou)(t) = S(t)uo + /O S(t—s)(g(u(s)) —uls) + h(s, x))ds
for each u € C([0,T]; up, H). Then we have:

Lemma 3.1. For each ug € H, Ky, is compact and has a unique fized point
in vy, € C([0,T];u0, H).

Proof. See the proofs of Theorems 1.7 and 2.1 in Chapter 6 of Pazy [11]. O

Remark. Since Sug = vy, (T) and v, is a solution of (I), vy, is a periodic
solution of (I).

By (Hj), there exists p1 > 0 such that % > \p for all |u] < .
Let 0 < € < 1 be such that h — €1 > 0 and |€d1|oo < p1 on Q. Then we
have

—A(ed1) + g1 = €M1 +ed1 < g(ed1) +h on €.
Hence €¢; is a strict subsolution of (I). Let 0 < A < Ay. By (Hy), there exists
p2 > 0 such that g(u) < Au for all |u| > ps. Put ¢ = max{g(u) : 0 < u < ps}.
Since A < A;. Dirichlet boundary value problem

—Agu=Xu+c+h
has a solution v € H}(Q2). Note that ¢ + h > 0, we have that v € C*(Q) and
v>0on . Let b >0 and put u = bgy + v. Then

Av(x) + Abor (z) > A(v(x) + bor(x))
> g(v(x) + bpy(x)) for x € Q with a(x) > pe
and ¢ > g(a(x)) for € Q with a(x) < .
Hence, we have
—AL U+ T > M+ Mbpr +c+ h > g(a) + h.

Therefore, @ is a strict supersolution of (I). Recall that d¢,/dn < 0 and
Ov/On < 0 on 0N by the maximal principle. Then we can choose b > 0
sufficiently large so that e¢; < u on 2. We know that S is strongly order
preserving on [e¢y, 4] and
S[G(bh ﬂ,] C [6(]51, ﬁ]

We know that S[egy, @] is relatively compact in C3(Q) (cf. Proposition 21.2 of
[5]). Hence, by Theorem 4.2 of [5], we have two sequences ul = S™(ep) and
w? = S™ (1) which converges to a fixed point u") and u(® of S as n — oo,
respectively and e¢; < u(!) < u® < 4. From Remark 21.3 of [5], the problem
(P) has a solution u; € CY2([0,T] x Q) with u;(0) = uy (T) = u'? for i = 1,2
(cf. Lemma 20.1 of [5]). Therefore we have:
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Lemma 3.2. For each h € C*(Qr) and h > 0, there exist a solution uy €
C12([0,T] x Q) of (P) such that ey < ui(t) < on [0,T].

Next, we prove the existence of the second solution.

By Lemma 3.1, we have:
Lemma 3.3. Iflim, |u,(11) - u5‘2)|6c1)(9) > 0, then we have two solutions uq,
ug of (P) such that ey < u1(0) = v < uz(0) = u? < a.
Proof. cf. Lemma 3.1 and Remark 21.3 in [5]. O

To complete our assertion, we assume that

(3.1) lim [ul) — w1 (q) = 0.

n—oo

Now, we let I : V — R be a functional defined by
1
I(v) = §Hv||§ —/ G(v)dz for veV.
Q
By I¢, we denote the level set I¢ = {v € V : I(v) < ¢}. From the definition of
I and (H3), we can see that limj|,||,—oc /(v) = 00. Thus we have that
—o0 <my =min{l(v) :v eV}

(H3) implies that for any nonzero v € V, there is sufficiently small ¢ > 0 that
I(tv) < 0. That is m; < 0.

Lemma 3.4. For any 0 € [my1,0], there exist m > 1 and a continuous function
h:S™ — I° such that h(S™) is not contractible in I°, where S™ denotes the
unit sphere in R™.

Proof. We put Vi, = span{¢y,da,...,¢r}. Fix § € [m1,0]. Let v € V with
[lv|]]l2 = 1. From (H;), we have that the mapping s — I(sv) is decreases on
interval [0, t], where ¢ > 0 satisfies

I(tv) = min{I(sv) : s> 0}
and increases on [t,00). From the definition of I, we have, by (Ha),
£2||v]|2 = / g(tv)tvdz < Cl/ to o dg.
Q Q
Suppose that v € Vi, for some k > 2. Since [v[%T] < Cslv|3T" for some
Cs > 0 and M\ |v|3 < |Vv|3, we have that
7 ll3 < Crlola

a+1
< C1Cslofs™

<. C L\ 2(a+1)
S 0103 )\71; [[v]]2
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and hence 0 < t < (C’ng)ﬁ(/\ik)%. This implies that ¢t — 0 when k& — .
By (Hy) and (Hs),

t2 tv t2
I(tv) = —||v||3 —/ / g(s)ds > — — Clt(’”‘l/ lv|*Ttda
2 aJo 2 Q

t2
> 5 _ Clcgta+l|,u|g+1

t2 \V4 a+1
2 L Cngto‘H < ’U|2)

2 VA

2 £\
>——-CC3 | — .
=2 (ﬁ)

Thus I(tv) — 0 as k — oco. Therefore there exists kg > 0 such that I‘SﬂV,jg = ¢.
Let vy € 15, then since I is an even function, —vy € . If {vg, —vo} is
contractible in I?, by Krasonalski’s result (cf. Lemma 3.2 of Bahri [3]), we
can define an odd continuous function hy : S' — I° such that hy(S') C I°.
By induction, if hy,_1(S*0~1) is contractible, we can construct an odd and
continuous function hy, : S§ — I°. but since hy,(S¥) N Vi- # ¢, this is
impossible. Hence, this proves our theorem. (I

By (H,), there exists c3 > 0 such that Au — c3 < g(u) for all u < 0, where
0 < A < A1. Then there exists a negative solution v € ¢*(Q) of the Dirichlet
problem
—Azu = A\u — c3.
Let a > 1. If we put u = av, then
—Azu+u=MXav—c3+av<Aiav—cz <g(u)+h.
That is u is a strict subsolution of (P).

Lemma 3.5. For any § < 0, there exists 01,02 < 0 such that § < §; < ds < 0
and the interval [61, 2] contains no critical point of 1.

Proof. Let §y < 0 and suppose contrary that there exists no interval in (g, 0)
satisfying the condition. Then, for any 6y < & < 0, there exists a sequence
{un} C V such that VI(u,) = 0; i.e., —Auy, +u, = g(uy,) and lim, o0 I (uy,) =
J.

Then, by (Hs), we have

1 un ()
§= lim I(u,) = lim | =||jun|/2 — / / g(t)dtdx
n— oo n—oo \ 2 aJo

. 1 2 Cl 1+

(Gl - 155t ).

Hence {u,} is bounded in W12(Q) and hence bounded in V. Therefore there
exists a subsequence, say again {u,}, such that {u,} converges to u € V

strongly in H and weakly in V.

Y
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Since g is Lipschitz continuous and
||t — un”% < Jg(um) — g(un)l2|um — unl2 < Lltm — unl2

for some constant L > 0, {u,} converges to u strongly in V. Therefore, we have
VI(u) =0 and I(u) = §. This is impossible and completes our assertion. [

Lemma 3.6. Let g < 0 and 61,92 be constants, g < 01 < d2 < 0, satis-
fying the assertion of Lemma 3.5. Then there exists mg such that, for each
h e CY(Qr) with |hlcigyy < mo, if v is the solution of (I) with v(0) €
I° for some § € [01, 2], then w(t) € I fort > 0.

Proof. Let dg such that I(e¢1) < dg. Let 01,82 be constants such that §y <
01 < 02 < 0 and satisfying the assertion of Lemma 3.5. Then we define mg =
inf{||VI(v)||s : v € I?2\ I°}, then we have 1o > 0. We put mg = 1ng/|Q|"/2.
Now let h € C*(Qr) with |h|c1(g,) < mo. Suppose § € [d1,d2], v(0) € I and
v(t) € I°2 on an interval [0,t,(0)]. From the definition of my, we have that for
t € [0,t,(0)], using the Holder inequality,
t dv
10(0) - 1600)) = [ VI((s) - 5
0 s
t
S/O (=N I@)IZ + [V ()]

s/o IV (=11VI]]. + [|A(s)]]) < 0.

Then we have I(v(t)) < I(v(0)). Hence, we have that v(t) € I° for all ¢ > 0.
This completes our assertion. (I

Theorem. There exists mo > 0 such that for each h € CY(Qr) with |hler (@)
< my, there exists a periodic solution ug in V' \ [epy,u].

Proof. Let g, mg be as in Lemma 3.5. Let u; be the solution of (P) obtained
in Lemma 3.2.

Suppose there in no fixed point of S in V' \ [e¢1,@]. Let g, d2 be constants
such that §p < 61 < 02 < 0 satisfying the assertion of Lemma 3.5. We recall
Lemma 3.6. Since e¢q € I% and v = lim,_, uld) = lim,, o0 S™(e¢1), we
find that «(!) € I°. Let e > 0 be such that §; 4+ 2¢ < d. Then, by (3.1), there

exists ng such that for all n > ng, such that
ug),u&z) c [or+e/2

and

(3.2) < eforall v,z € [ulM, ul?)].

/QG(v)dz—/QG(z)d:U

Since || - ||3 is a convex function, by (3.2), I(av + (1 — a)ug)) < 61 + 2¢ for all
vE [u,(f),qu’)] NI%*¢ and « € [0, 1], and hence [uﬁﬂ),uﬁf)] N I%1%€ is star convex
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with respect to ug) in 791+2¢. Therefore, for any sufficiently small » > 0 ,

(3.3) [v, 2] N I°1F€ is cotractible in 192,

where v, z € C3(Q) such that ||v — ug)||2 <rand ||z — u%2)||2 <.

By Lemma 3.4, there exist m > 0 and a continuous function h : S™ — I
such that h(S™) is not contractible in I%. Since C&(Q) N I° is dense in
1%, we may have h(S™) C CZ(Q) N I%. Let u, be the solution of (I) with
u.(0) = h(z),z € S™. By choosing b > 0 sufficiently large in the definition
of @, we have another strict supersolution # > 4 such that v < @ for all
v € h(S™). Similarly, by choosing @ > 0 in the definition of u, we have that
u < epp and u < v for all v € h(S™). We recall that u and @ are strict sub
and supersolution of (I), respectively and that u < e¢;,% < @. Since S has
no fixed point in V' \ [e¢y, ], we have that S™(u) — u®) and S (@) — u(® as
n — oo. Therefore, there exists n > mng such that ||S™(u) — uSPHQ < r and
[|S™(a) — u%2)||2 < r. Since S™(u) < u,(nT) < S™(u) for all z € S™, by (3,3),
{u,(nT) : z € S™} is contractible in I°2.

By Lemma 3.6, we can define a homotopy

p:[0,nT] x h(S™) — CA(Q) N I°
by
p(s,h(2)) =uy(s) for 0 < s <nT and z € S™.

Then h(S™) is contractible in I°2. This is a contraction. Hence, S has a fixed
point ug in V' \ [eg1,4]. This proves assertion. O
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