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EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS
FOR SEMILINEAR PARABOLIC EQUATIONS

WITH SUBLINEAR GROWTH NONLINEARITIES

Wan Se Kim

Abstract. In this paper, we establish a multiple existence result of T -
periodic solutions for the semilinear parabolic boundary value problem
with sublinear growth nonlinearities. We adapt sub-supersolution scheme
and topological argument based on variational structure of functionals.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with smooth boundary ∂u. In
this paper, we are concerned with the multiple existence result of T -periodic
solutions for the semilinear parabolic boundary value problem

(P )





ut −4xu + u = g(u) + h(t, x) in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = u(T ) in Ω̄.

We assume u = u(t, x), g : R → R is continuous, and h : R × Ω̄ → R is a
continuous function which is T -periodic with respect to the first variable and
h > 0 on R×Ω. There are many results for the multiple existence of T -periodic
solutions for seminear parabolic equations with this type of nonlinearity in [6,
7, 8, 9], and for elliptic equations also in [2, 4, 10].

Here, we denote QT the open set (0, T ) × Ω. For q ≥ 1, we denote by | · |q
and || · ||q the norms of Lq(Ω) and W 1,q(Ω), respectively. || · || stands for the
norm of H1

0 (Ω). We put V = H1
0 (Ω), H = L2(Ω). The norm of the dual space

V ∗ of V is denoted by || · ||∗. 〈·, ·〉 stands for the paring of V and V ∗. A
function u ∈ C([0, T ]; H1

0 (Ω))∩C1([0, T ];L2(Ω)) is said to be a solution of (P )
if u satisfies (P ). Here, we assume

(H1) g is Lipschitz continuous, nondecreasing, odd function and g(0) = 0,
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(H2) there exist C1 > 0 and 0 < α < 1 such that |g(u)| ≤ C1|u|α on R,
(H3) there exists C2 > 0 such that

lim inf
|u|→0

G(u)
|u| ≥ C2,

where G(u) =
∫ u

0
g(s)ds,

(H4)

lim
|u|→∞

g(u)
u

< λ1,

(H5)

λ1 < lim
|u|→0

g(u)
u

,

where we denote by λ1 < λ2 ≤ · · · the eigenvalues of the problem

−4u = λu, u ∈ H1
0 (Ω)

and by φ1 the normalized eigenfunction corresponding to λ1.

Such a function exists; for example, we first fix a smooth function φ : (−∞,∞)
→ [0, 1] such that φ′(t) ≤ a, and

φ(t) =

{
0 for t ∈ (−∞,−1] ∪ [1,∞)
1 for t ∈ [− 1

2 , 1
2 ].

Let n ≥ 1 and t±n be the numbers such that t−n < 0 < t+n and g(2t±n ) = 2nt±n .
We put

gn(t) =

{
nφ+

n (t)t + (1− φ+
n (t))h(t) for t ≥ 0

nφ−n (t)t + (1− φ−n (t))h(t) for t ≤ 0,

where h(t) = |t|α−1t, φ+
n (t) = φ( t

2t+n
) and φ−n (t) = φ( −t

2t−n
). Then we have that

gn(t) = nt on [t−n , t+n ] and gn(t) = h(t) on (−∞, 2t−n )∪ (2t+n ,∞). For Lipschitz
continuity of gn, let consider the case that t > 0. From the definition, we have
gn(t) = nt on [0, t+n ]. On the other hand, we have that for t ∈ [t+n , 2t+n ],

g′n(t) = n((φ+
n (t))′t + φ+

n (t)) + (1− φ+
n (t))h′(t)− (φ+

n (t))′h(t)

≤ n

(
at

2t+n
+ 1

)
+

α

t1−α
+

at

2t+n
tα

≤ n
(a

2
+ 1

)
+

α

(t+n )1−α
+

a

2
(2t+n )α.

Then we find g′n(t) ≤ C max {n, h′(t)} for some C > 0. Moreover recalling that
n(2t+n )1−α ∼= 1, we find that h′(t) ≤ Cn on [t+n , 2t+n ] for some C > 0, and hence
each gn is Lipschitz continuous on R. Therefore (H1)-(H5) follows from the
definition.
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2. Preliminary results

Let us consider a initial boundary value problem associated with (P )

(I)





ut −4xu + u = g(u) + h in (0.∞)× Ω
u(t) = 0 on (0,∞)× Ω
u(0) = u0 in ∂Ω,

where u0 ∈ L2(Ω) and h ∈ C1(Q̄T ). We denote by t(u0) the number such that
[0, t(u0)) is the maximal interval for u(t) to exist. If u is a solution of problem
(I) on [0, t(u0)), u can be represented by the integral form

(2.1) u(t) = S(t)u0 +
∫ t

0

S(t− s)(g(u(s))− u(s) + h(s, x))ds

for 0 < t < t(u0). Here, {S(t)} is the semigroup of linear operators generated
by −4x. It is known that for each q ≥ 2, there exists c(q) > 0 satisfying

(2.2) ||S(t)f ||q ≤ c(q)t−1/2|f |q for all f ∈ Lq(Ω) and t > 0

(cf. Amann [1], Tanabe [12]). If we set X+ = {u ∈ C1
0 (Ω̄);u ≥ 0 on Ω}, then

X+ is a closed cone in C1
0 (Ω̄). We employ the standard order in C1

0 (Ω̄) as

u ≥ v ⇔ u− v ∈ X+, u > v ⇔ u ≥ v, u 6= v, u À v ⇔ u− v ∈ intX+.

For each u, v ∈ C1
0 (Ω̄), we put

[v, u] = {w ∈ C1
0 (Ω̄); v ≤ w ≤ u}.

A mapping S : [u, v] → C1
0 (Ω̄) is said to be order preserving if Sx À Sy for

x, y ∈ [u, v] with x > y. Here, we denote by S the Poincare mapping associated
with problem (I). That is Su0 = u(T ), u0 ∈ H. It is obvious that the Poincare
mapping S is well defined only when t(u0) > T . It follows from the parabolic
maximal principle that S is strictly monotone with respect to the order defined
above. That is, if u > v in C1

0 (Ω̄) and Su, Sv exist, then Su À Sv. A function
u ∈ C1,2((0.T ) × Ω) ∩ C0,1((0, T ) × Ω̄) is called subsolution (cf. Hess [5]) for
the T -periodic problem (I) if





ut −4xu + u ≤ g(u) + h in (0,∞)× Ω
u = 0 on (0,∞)× ∂Ω

u(0) = u0 in Ω.

A subsolution is said to be a strict subsolution if it is not a solution of (I).
Similarly, a supersolution and strict supersolution are defined by the inequality
sign, correspondingly.

3. Multiplicity result

We set

C([0, T ]; u0,H) = {u ∈ C([0, T ],H); u(0, x) = u0(x) on Ω}
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for each u0 ∈ H. For each u0 ∈ H, we define a mapping Ku0 : C([0, T ];u0,H)
→ C([0, T ];u0,H) by

(Ku0u)(t) = S(t)u0 +
∫ t

0

S(t− s)(g(u(s))− u(s) + h(s, x))ds

for each u ∈ C([0, T ];u0,H). Then we have:

Lemma 3.1. For each u0 ∈ H, Ku0 is compact and has a unique fixed point
in vu0 ∈ C([0, T ];u0, H).

Proof. See the proofs of Theorems 1.7 and 2.1 in Chapter 6 of Pazy [11]. ¤

Remark. Since Su0 = vu0(T ) and vu0 is a solution of (I), vu0 is a periodic
solution of (I).

By (H5), there exists µ1 > 0 such that g(u)
u > λ1 for all |u| ≤ µ1.

Let 0 < ε < 1 be such that h − εφ1 > 0 and |εφ1|∞ ≤ µ1 on Ω. Then we
have

−∆(εφ1) + εφ1 = ελ1φ1 + εφ1 < g(εφ1) + h on Ω.

Hence εφ1 is a strict subsolution of (I). Let 0 < λ < λ1. By (H4), there exists
µ2 > 0 such that g(u) < λu for all |u| ≥ µ2. Put c = max{g(u) : 0 ≤ u ≤ µ2}.
Since λ < λ1. Dirichlet boundary value problem

−∆xu = λu + c + h

has a solution v ∈ H1
0 (Ω). Note that c + h > 0, we have that v ∈ C1(Ω̄) and

v > 0 on Ω. Let b > 0 and put ũ = bφ1 + v. Then

λv(x) + λ1bφ1(x) > λ(v(x) + bφ1(x))

> g(v(x) + bφ1(x)) for x ∈ Ω with ũ(x) ≥ µ2

and c > g(ũ(x)) for x ∈ Ω with ũ(x) < µ2.
Hence, we have

−∆xũ + ũ ≥ λv + λ1bφ1 + c + h > g(ũ) + h.

Therefore, ũ is a strict supersolution of (I). Recall that ∂φ1/∂n < 0 and
∂v/∂n < 0 on ∂Ω by the maximal principle. Then we can choose b > 0
sufficiently large so that εφ1 ¿ ũ on Ω. We know that S is strongly order
preserving on [εφ1, ũ] and

S[εφ1, ũ] ⊂ [εφ1, ũ].

We know that S[εφ1, ũ] is relatively compact in C1
0 (Ω̄) (cf. Proposition 21.2 of

[5]). Hence, by Theorem 4.2 of [5], we have two sequences u
(1)
n ≡ Sn(εφ) and

u
(2)
n ≡ Sn(ũ) which converges to a fixed point u(1) and u(2) of S as n → ∞,

respectively and εφ1 < u(1) ≤ u(2) < ũ. From Remark 21.3 of [5], the problem
(P ) has a solution u1 ∈ C1,2([0, T ]× Ω̃) with u1(0) = u1(T ) = u(i) for i = 1, 2
(cf. Lemma 20.1 of [5]). Therefore we have:
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Lemma 3.2. For each h ∈ C1(Q̄T ) and h > 0, there exist a solution u1 ∈
C1,2([0, T ]× Ω̄) of (P ) such that εφ1 < u1(t) < ū on [0, T ].

Next, we prove the existence of the second solution.
By Lemma 3.1, we have:

Lemma 3.3. If limn→∞ |u(1)
n − u

(2)
n |c1

0(Ω̄) > 0, then we have two solutions u1,
u2 of (P ) such that εφ1 < u1(0) = u(1) < u2(0) = u(2) < ū.

Proof. cf. Lemma 3.1 and Remark 21.3 in [5]. ¤

To complete our assertion, we assume that

(3.1) lim
n→∞

|u(1)
n − u(2)

n |c1
0(Ω̄) = 0.

Now, we let I : V → R be a functional defined by

I(v) =
1
2
||v||22 −

∫

Ω

G(v)dx for v ∈ V.

By Ic, we denote the level set Ic = {v ∈ V : I(v) ≤ c}. From the definition of
I and (H2), we can see that lim||v||2→∞ I(v) = ∞. Thus we have that

−∞ < m1 = min{I(v) : v ∈ V }.
(H3) implies that for any nonzero v ∈ V , there is sufficiently small t > 0 that
I(tv) < 0. That is m1 < 0.

Lemma 3.4. For any δ ∈ [m1, 0], there exist m ≥ 1 and a continuous function
h : Sm → Iδ such that h(Sm) is not contractible in Iδ, where Sm denotes the
unit sphere in Rm.

Proof. We put Vk = span{φ1, φ2, . . . , φk}. Fix δ ∈ [m1, 0]. Let v ∈ V with
||v||2 = 1. From (H1), we have that the mapping s → I(sv) is decreases on
interval [0, t], where t > 0 satisfies

I(tv) = min{I(sv) : s ≥ 0}
and increases on [t,∞). From the definition of I, we have, by (H2),

t2||v||22 =
∫

Ω

g(tv)tvdx ≤ C1

∫

Ω

tα+1|v|α+1dx.

Suppose that v ∈ V ⊥
k−1 for some k ≥ 2. Since |v|α+1

α+1 ≤ C3|v|α+1
2 for some

C3 > 0 and λk|v|22 ≤ |∇v|22, we have that

t1−α||v||22 ≤ C1|v|α+1
α+1

≤ C1C3|v|α+1
2

≤ C1C3

(
1
λk

)α+1

||v||2(α+1)
2
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and hence 0 < t ≤ (C1C3)
1

1−α ( 1
λk

)
1+α
1−α . This implies that t → 0 when k →∞.

By (H1) and (H2),

I(tv) =
t2

2
||v||22 −

∫

Ω

∫ tv

0

g(s)ds ≥ t2

2
− C1t

α+1

∫

Ω

|v|α+1dx

≥ t2

2
− C1C3t

α+1|v|α+1
2

≥ t2

2
− C1C3t

α+1

( |∇v|2√
λk

)α+1

≥ t2

2
− C1C3

(
t√
λk

)α+1

.

Thus I(tv) → 0 as k →∞. Therefore there exists k0 ≥ 0 such that Iδ∩V ⊥
k0

= φ.
Let v0 ∈ Iδ, then since I is an even function, −v0 ∈ Iδ. If {v0,−v0} is
contractible in Iδ, by Krasonalski’s result (cf. Lemma 3.2 of Bahri [3]), we
can define an odd continuous function h1 : S1 → Iδ such that h1(S1) ⊂ Iδ.
By induction, if hk0−1(Sk0−1) is contractible, we can construct an odd and
continuous function hk0 : Sk

0 → Iδ. but since hk0(S
k0) ∩ V ⊥

k0
6= φ, this is

impossible. Hence, this proves our theorem. ¤
By (H4), there exists c3 > 0 such that λu − c3 < g(u) for all u ≤ 0, where

0 < λ < λ1. Then there exists a negative solution v ∈ c1(Ω̄) of the Dirichlet
problem

−∆xu = λu− c3.

Let a ≥ 1. If we put u = av, then

−∆xu + u = λav− c3 + av < λav− c3 < g(u) + h.

That is u is a strict subsolution of (P ).

Lemma 3.5. For any δ < 0, there exists δ1, δ2 < 0 such that δ < δ1 < δ2 < 0
and the interval [δ1, δ2] contains no critical point of I.

Proof. Let δ0 < 0 and suppose contrary that there exists no interval in (δ0, 0)
satisfying the condition. Then, for any δ0 < δ < 0, there exists a sequence
{un} ⊂ V such that ∇I(un) = 0; i.e., −∆un+un = g(un) and limn→∞ I(un) =
δ.
Then, by (H2), we have

δ = lim
n→∞

I(un) = lim
n→∞

(
1
2
||un||22 −

∫

Ω

∫ un(x)

0

g(t)dtdx

)

≥ lim
n→∞

(
1
2
||un||22 −

C1

1 + α
|u|1+α

1+α

)
.

Hence {un} is bounded in W 1,2(Ω) and hence bounded in V . Therefore there
exists a subsequence, say again {un}, such that {un} converges to u ∈ V
strongly in H and weakly in V.
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Since g is Lipschitz continuous and

||um − un||22 ≤ |g(um)− g(un)|2|um − un|2 ≤ L|um − un|2
for some constant L > 0, {un} converges to u strongly in V . Therefore, we have
∇I(u) = 0 and I(u) = δ. This is impossible and completes our assertion. ¤

Lemma 3.6. Let δ0 < 0 and δ1, δ2 be constants, δ0 < δ1 < δ2 < 0, satis-
fying the assertion of Lemma 3.5. Then there exists m0 such that, for each
h ∈ C1(Q̄T ) with |h|C1(Q̄T ) < m0, if v is the solution of (I) with v(0) ∈
Iδ for some δ ∈ [δ1, δ2], then v(t) ∈ Iδ for t ≥ 0.

Proof. Let δ0 such that I(εφ1) < δ0. Let δ1, δ2 be constants such that δ0 <
δ1 < δ2 < 0 and satisfying the assertion of Lemma 3.5. Then we define m̃0 =
inf{||∇I(v)||∗ : v ∈ Iδ2 \ Iδ1}, then we have m̃0 > 0. We put m0 = m̃0/|Ω|1/2.
Now let h ∈ C1(Q̄T ) with |h|C1(Q̄T ) < m0. Suppose δ ∈ [δ1, δ2], v(0) ∈ Iδ and
v(t) ∈ Iδ2 on an interval [0, tv(0)]. From the definition of m0, we have that for
t ∈ [0, tv(0)], using the Holder inequality,

I(v(t))− I(v(0)) =
∫ t

0

∇I(v(s)) · dv

ds

≤
∫ t

0

(−||∇I(v)||2∗ + ||h(s)||||∇I(v)||∗)

≤
∫ t

0

||∇I||∗(−||∇I||∗ + ||h(s)||) < 0.

Then we have I(v(t)) < I(v(0)). Hence, we have that v(t) ∈ Iδ for all t ≥ 0.
This completes our assertion. ¤

Theorem. There exists m0 > 0 such that for each h ∈ C1(Q̄T ) with |h|C1(Q̄T )

< m0, there exists a periodic solution u2 in V \ [εφ1, ū].

Proof. Let δ0, m0 be as in Lemma 3.5. Let u1 be the solution of (P ) obtained
in Lemma 3.2.

Suppose there in no fixed point of S in V \ [εφ1, ū]. Let δ0, δ2 be constants
such that δ0 < δ1 < δ2 < 0 satisfying the assertion of Lemma 3.5. We recall
Lemma 3.6. Since εφ1 ∈ Iδ0 and u(1) = limn→∞ u

(1)
n = limn→∞ Sn(εφ1), we

find that u(1) ∈ Iδ1 . Let ε > 0 be such that δ1 + 2ε < δ2. Then, by (3.1), there
exists n0 such that for all n ≥ n0, such that

u(1)
n , u(2)

n ∈ Iδ1+ε/2

and

(3.2)
∣∣∣∣
∫

Ω

G(v)dx−
∫

Ω

G(z)dx

∣∣∣∣ < ε for all v, z ∈ [u(1)
n , u(2)

n ].

Since || · ||22 is a convex function, by (3.2), I(αv + (1− α)u(1)
n ) < δ1 + 2ε for all

v ∈ [u(1)
n , u

(2)
n ]∩ Iδ1+ε and α ∈ [0, 1], and hence [u(1)

n , u
(2)
n ]∩Iδ1+ε is star convex
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with respect to u
(1)
n in Iδ1+2ε. Therefore, for any sufficiently small r > 0 ,

(3.3) [v, z] ∩ Iδ1+ε is cotractible in Iδ2 ,

where v, z ∈ C1
0 (Ω̄) such that ||v − u

(1)
n ||2 < r and ||z − u

(2)
n ||2 < r.

By Lemma 3.4, there exist m > 0 and a continuous function h : Sm → Iδ2

such that h(Sm) is not contractible in Iδ2 . Since C1
0 (Ω̄) ∩ Iδ2 is dense in

Iδ2 , we may have h(Sm) ⊂ C1
0 (Ω̄) ∩ Iδ2 . Let uz be the solution of (I) with

uz(0) = h(z), z ∈ Sm. By choosing b > 0 sufficiently large in the definition
of ũ, we have another strict supersolution ū > ũ such that v < ū for all
v ∈ h(Sm). Similarly, by choosing a > 0 in the definition of u, we have that
u < εφ1 and u < v for all v ∈ h(Sm). We recall that u and ū are strict sub
and supersolution of (I), respectively and that u < εφ1, ũ < ū. Since S has
no fixed point in V \ [εφ1, ũ], we have that Sn(u) → u(1) and Sn(ū) → u(2) as
n → ∞. Therefore, there exists n ≥ n0 such that ||Sn(u) − u

(1)
n ||2 < r and

||Sn(ū)− u
(2)
n ||2 < r. Since Sn(u) ≤ uz(nT ) ≤ Sn(ū) for all z ∈ Sm, by (3, 3),

{uz(nT ) : z ∈ Sm} is contractible in Iδ2 .
By Lemma 3.6, we can define a homotopy

ρ : [0, nT ]× h(Sm) → C1
0 (Ω) ∩ Iδ2

by
ρ(s, h(z)) = uz(s) for 0 ≤ s ≤ nT and z ∈ Sm.

Then h(Sm) is contractible in Iδ2 . This is a contraction. Hence, S has a fixed
point u2 in V \ [εφ1, ũ]. This proves assertion. ¤
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