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ANALYSIS OF A DELAY PREY-PREDATOR MODEL WITH
DISEASE IN THE PREY SPECIES ONLY

Xueyong Zhou, Xiangyun Shi, and Xinyu Song

Abstract. In this paper, a three-dimensional eco-epidemiological model
with delay is considered. The stability of the two equilibria, the existence
of Hopf bifurcation and the permanence are investigated. It is found that
Hopf bifurcation occurs when the delay τ passes though a sequence of
critical values. The estimation of the length of delay to preserve stability
has also been calculated. Numerical simulation with a hypothetical set
of data has been done to support the analytical findings.

1. Introduction

The mathematical modelling of epidemics has become a very important sub-
ject of research after the seminal model of Kermac-McKendric (1927) on SIRS
(susceptible-infected-removed-susceptible) systems, in which the evolution of a
disease which gets transmitted upon contact is described. Important studies
in the following decades have been carried out, with the aim of controlling the
effects of diseases and of developing suitable vaccination strategies [12, 18, 25].
After the seminal models of Vito Volterra and Alfred James Lotka in the mid
1920s for predator-prey interactions, mutualist and competitive mechanisms
have been studied extensively in the recent years by researchers [15, 16, 17].

In the natural world, however, species do not exist alone, it is of more biologi-
cal significance to study the persistence-extinction threshold of each population
in systems of two or more interacting species subjected to parasitism. Math-
ematical biology, namely predator-prey systems and models for transmissible
diseases are major fields of study in their own right. But little attention has
been paid so far to merge these two important areas of research (see [5, 6, 13,
26]). In order to study the influence of disease on an environment where two
or more interacting species are present. In this paper, we shall put emphasis
on such an eco-epidemiological system consisting of three species, namely, the
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sound prey (which is susceptible), the infected prey (which becomes infective
by some viruses) and the predator population.

We have two populations:
1. The prey, whose total population density is denoted by N .
2. The predator, whose population density is denoted by y.
We make the following assumptions:
(A1) In the absence of infection and predation, the prey population density

grows logistically with carrying capacity K (K > 0) and an intrinsic birth rate
constant r (r > 0),

(1.1)
dS

dt
= rS

(
1− S

K

)
.

(A2) In the presence of disease, the total prey population N are divided into
two distinct classes, namely, susceptible populations, S, and infected popula-
tions, I. Therefore, at any time t, the total density of prey population is

(1.2) N(t) = S(t) + I(t).

(A3) We assume that only susceptible prey S are capable of reproducing
with logistic law (Eq.(1.1)); i.e., the infected prey I are removed by death
(say its death rate is a positive constant µ), or by predation before having the
possibility of reproducing. However, the infective population I still contributes
with S to population growth toward the carrying capacity.

(A4) We assume that the force of infection at time t is given by βS(t)I(t−τ),
where β is the average number of contacts per infective per day and τ > 0 is
a fixed time during which the infectious agents develop in the vector and it is
only after that time that the infected vector can infect a susceptible prey [3,
19, 21]. Hence, the SI model of the infected prey is:

(1.3)





Ṡ = rS

(
1− S

K

)
− βSI(t− τ),

İ = βSI(t− τ)− µI.

(A5) It is assumed that predator can distinguish between infected and health
prey. We assume that the predator eats only the infected prey with Leslie-
Gower ratio-dependent schemes [1, 2, 14, 20, 22]. That is to say, the predator
consumes the prey according to the ratio-dependent functional response and the
predator grows logistically with intrinsic growth rate δ and carrying capacity
proportional to the prey populations size I.

From the above assumptions we have the following model:

(1.4)





dS

dt
= rS

(
1− S

K

)
− βSI(t− τ),

dI

dt
= βSI(t− τ)− cyI

my + I
− µI,

dy

dt
= δy

(
1− hy

I

)
.
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The initial conditions for system (1.4) take the form

(1.5)

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), y(θ) = ϕ3(θ),

ϕ1(θ) ≥ 0, ϕ2(θ) ≥ 0, ϕ3(θ) ≥ 0, θ ∈ [−τ, 0],

ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0,

where (ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ C([−τ, 0], R3
+0), the Banach space of continu-

ous functions mapping the interval [−τ, 0] into R3
+0, where R3

+0 = {(x1, x2, x3) :
xi ≥ 0, i = 1, 2, 3}.

It is well known by the fundamental theorem of functional differential equa-
tions that system (1.4) has a unique solution (S(t), I(t), y(t)) satisfying initial
conditions (1.5).

The paper is organized as follows. In Section 2, we present the positivity
and the boundedness of solutions. We find conditions for local stability and
bifurcation results in Section 3. In Section 4, the time delay is estimated
for witch local stability is preserved. The permanence of system is given in
Section 5. Some numerical simulations are performed for a hypothetical of
parameter values in the last section.

2. Positivity and boundedness of solutions

It is important to show positivity and boundedness for the system (1.4)
as they represent populations. Positivity implies that the populations survive
and boundedness may be interpreted as a natural restriction to growth as a
consequence of limited resources. The model system can be put into the matrix
form Ẋ = G(X), where X = (S, I, y)T ∈ R3 and G(X) is given by

G(X) =




G1(X)
G2(X)
G3(X)


 =




rS(1− S
K )− βSI(t− τ)

βSI(t− τ)− cyI

my + I
− µI

δy(1− hy

I
)


 .

Let R3
+ = [0,+∞)3 be the nonnegative octant in R3, the G : R3+1

+ → R3 is
locally Lipschitz and satisfy the condition

Gi(X)|Xi(t)=0, X ∈ R3
+ ≥ 0,

where X1 = S, X2 = I, X3 = y.
Due to Lemma in [27] and Theorem A4 in [24] any solutions of (1.4) with

positive initial conditions exist uniquely and each component of X remains the
interval [0, b) for some b > 0. Furthermore, if b < +∞, then lim sup[S(t) +
I(t) + y(t)] = +∞.

Next, we present the boundedness of solutions. Since

dS

dt
≤ rS

(
1− S

K

)
,
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by a standard comparison theorem, we have lim supt→+∞ S(t) ≤ M1, where
M1 = max{S(0),K}. Define the function

W (t) = S(t) + I(t).

The time derivative along a solution of (1.4) is

dW

dt
= rS

(
1− S

K

)
− cyI

my + I
− µI ≤ M1(r + 1)− qW (t),

where q = min{1, µ}. Thus, dW
dt + qW ≤ M1(r + 1). Applying a theorem in

differential inequalities, we obtain

W (t) ≤ M1(r + 1)
q

+
[
W (S(0), I(0))− M1(r + 1)

q

]
e−qt.

Therefore, there exists M2 > 0 and some T1 > 0 such that I(t) ≤ M2, t ≥ T1.
Lastly, we consider the boundedness of y(t). From the third equation of

system (1.4), we get

dy

dt
≤ δy

(
1− hy

M2

)
.

By a standard comparison theorem, we have lim supt→+∞ y(t) ≤ M3, where
M3 = max{y(0), M2

h }. So, all solutions of system (1.4) with initial condition
enter the region B = {(S(t), I(t), y(t)) : 0 ≤ S(t) ≤ M1, 0 ≤ I(t) ≤ M2, 0 ≤
y(t) ≤ M3}.

3. Stability analysis and Hopf bifurcation

In this section, we focus on investigating the stability of the equilibria and
Hopf bifurcation of the positive equilibrium of the system (1.4). System (1.4)

has the boundary equilibrium E1(µ
β , r

β (1− µ
βK ), 0)

4
= (S1, I1, y1) and the positive

equilibrium E2(S2, I2, y2), where S2 = µh+c+µm
β(m+h) , I2 = r(βmK+βhK−µh−c−µm)

β2K(m+h) ,

y2 = r(βmK+βhK−µh−c−µm)
β2hK(m+h) . Clearly, if 1− µ

βK > 0, then E1 exists and remains

positive. And E2 exists and remains positive if β > 1
K (µ + c

m+h )
4
= β0.

Let E∗(S∗, I∗, y∗) be any arbitrary equilibrium. Then the characteristic
equation about E∗ is given by
(3.1)∣∣∣∣∣∣∣∣∣∣∣

r − 2rS∗

K
− βI∗ − λ −βS∗e−λτ 0

βI∗ βS∗e−λτ − cmy∗2

(my∗ + I∗)2
− µ− λ − cI∗2

(my∗ + I∗)2

0
δhy∗2

I∗2
δ − 2δhy∗

I∗
− λ

∣∣∣∣∣∣∣∣∣∣∣

= 0.
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For equilibrium E1, (3.1) reduces to

(3.2)

∣∣∣∣∣∣∣

−rS1

K
− βI1 − λ −βS1e

−λτ 0

βI1 βS1e
−λτ − µ− λ −c

0 0 δ − λ

∣∣∣∣∣∣∣
= 0.

It is easy to see that the equilibrium E1 is a saddle.
For equilibrium E2, (3.1) reduces to

(3.3) λ3 + A1λ
2 + A2λ + A3 + (B1λ

2 + B2λ + B3)e−λτ = 0,

where

A1 = δ + µ +
cmy2

2

(my2 + I2)2
+

rS2

K
,

A2 = δ

(
µ +

cmy2
2

(my2 + I2)2

)
+

rS2

K

(
δ + µ +

cmy2
2

(my2 + I2)2

)
+

δ

h

cI2
2

(my2 + I2)2
,

A3 =
rS2

K

[
δ

(
µ +

cmy2
2

(my2 + I2)2

)
+

δ

h

cI2
2

(my2 + I2)2

]
,

B1 = −βS2,

B2 = −δβS2 − rβS2
2

K
+ β2S2I2,

B3 = −rδβS2
2

K
+ δβ2S2I2.

For τ = 0, the transcendental equation (3.3) reduces to (3.4):

(3.4) λ3 + (A1 + B1)λ2 + (A2 + B2)λ + A3 + B3 = 0.

We can easily get

A1 + B1 =
rS2

K
+ δ − δ∗ =

rβ0

K
+ δ − δ∗ > 0,

A2 + B2 =
rS2

K
(δ − δ∗) + β2S2I2 = r

(
µ +

c

m + h

) (
1 +

δ − δ∗

Kβ
− β0

β

)
,

A3 + B3 = δβ2S2I2 = rδ

(
µ +

c

m + h

)(
1− β0

β

)
> 0,

A3 −B3 = rδS2

[
3
µ(m + h) + c

K(m + h)
− β

]
= rδS2[3β0 − β],

where δ∗ = ch
(m+h)2 .

By Routh-Hurwitz Criterion, we know that all the roots of equation (3.4)
have negative real parts, i.e., the positive equilibrium E2 is locally asymptoti-
cally stable provided that the conditions

(H1) : (A1 + B1)(A2 + B2)− (A3 + B3) > 0,
(H2) : δ − δ∗ > 0, and
(H3) : β > β0 hold.
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We now turn to an investigation of the type of stability for system (1.4) at
the positive equilibrium E2. We shall firstly introduce two lemmas.

Lemma 3.1 ([23]). For the polynomial equation z3 + a1z
2 + a2z + a3 = 0,

(1) If a3 < 0, the equation has at least one positive root;
(2) If a3 ≥ 0 and 4 = a2

1 − 3a2 ≤ 0, the equation has no positive roots;
(3) If a3 ≥ 0 and 4 = a2

1 − 3a2 > 0, the equation has positive roots if and
only if z∗1 = −a1+

√4
3 and h(z∗1) ≤ 0, where h(z) = z3 + a1z

2 + a2z + a3.

Lemma 3.2. (i) The positive equilibrium E2 of system (1.4) is absolutely sta-
ble if and only if the equilibrium E2 of the corresponding ordinary differential
equation (ODE) system is asymptotically stable and the characteristic equation
(3.3) has no purely imaginary roots for any τ > 0;

(ii) The positive equilibrium E2 of system (1.4) is conditionally stable if and
only if all roots of the characteristic equation (3.3) have negative real parts
at τ = 0 and there exist some positive values τ such that the characteristic
equation (3.3) has a pair of purely imaginary roots ±iω0.

Theorem 3.1. For system (1.4), if the conditions (H1), (H2) and

(H4) : β > 3β0

hold, the positive equilibrium E2 is conditionally stable.

Proof. Assume that for some τ > 0, iω (ω > 0) is a root of characteristic
equation (3.3). Now substituting λ = iω (ω > 0) in (3.3) and separating the
real and imaginary parts, we obtain the system of transcendental equations

(3.5) A1ω
2 −A3 = (B3 −B1ω

2) cos(ωτ) + B2ω sin(ωτ),

(3.6) ω3 −A2ω = B2ω cos(ωτ)− (B3 −B1ω
2) sin(ωτ).

Squaring and adding (3.5) and (3.6) we get

(3.7) (B3 −B1ω
2)2 + B2

2ω2 = (A1ω
2 −A3)2 + (ω3 −A2ω)2.

We finally have
ω6 + P1ω

4 + P2ω
2 + P3 = 0,

where

P1 = A2
1 − 2A2 −B2

1 ,

P2 = A2
2 −B2

2 − 2A1A3 + 2B1B3,

P3 = A2
3 −B2

3 .

We know P3 < 0 provided that the condition (H4) holds. By Lemma 3.1,
there is at least a positive ω0 satisfying equation (3.7), i.e., the characteristic
equation (3.3) has a pair of purely imaginary roots of the form ±iω0. From
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equations (3.5) and (3.6), we can get the corresponding τk > 0 such that the
characteristic equation (3.3) has a pair of purely imaginary roots

τk =
1
ω0

arccos
[
(A1ω

2
0 −A3)(B3 −B1ω

2
0) + (ω3

0 −A2ω0)B2ω0

(B3 −B1ω2
0)2 + (B2ω0)2

]

+
2nπ

ω0
, (n = 0, 1, 2, 3, . . .).

We know that under the conditions of (H1), (H2), (H4), all the roots of charac-
teristic equation (3.3) have negative real parts when τ = 0. By Lemma 3.2 the
positive equilibrium E2 of system (1.4) is conditionally stable. This completes
the proof. ¤

Theorem 3.2. Under the condition (H4) and

(H5) : δ2 + (µ +
cm

(m + h)2
)2 + (

rS2

K
)2 − β2S2

2 −
2δch

(m + h)2
> 0,

system (1.4) undergoes Hopf bifurcation at the positive equilibrium E2 when
τ = τk.

Proof. Let λ(τ) = u(τ) + iω(τ) be a root of the characteristic equation (3.3).
Separating the real and imaginary parts of transcendental equation (3.4), we
then have

(3.8)

{
H1(u, ω, τ) = 0,

H2(u, ω, τ) = 0,

where

H1(u, ω, τ) =u3 − 3uω2 + A1u
2 −A1ω

2 + A2u + A3 + (B1u
2 −B1ω

2 + B2u

+ B3)e−uτ cos(ωτ) + (2B1uω + B2ω)e−uτ sin(ωτ),

H2(u, ω, τ) =− ω3 + 3u2ω + 2A1uω + A2ω − (B1u
2 −B1ω

2 + B2u

+ B3)e−uτ sin(ωτ) + (2B1uω + B2ω)e−uτ cos(ωτ).

By Theorem 3.1 we have H1(0, ω, τ) = H2(0, ω, τ) = 0. To check that the
Jacobian matrix

J =

(
∂H1
∂u

∂H1
∂ω

∂H2
∂u

∂H2
∂ω

)

satisfies |J |(0,ω0,τk) > 0. By means of the implicit function theorem, we de-
duce that equation (3.8) define u, ω as functions of τ in a neighborhood of
(0, ω0, τk) such that u(τk) = 0 and ω(τk) = ω0. We now investigate how the
real part of the roots of characteristic equation (3.3) varies as τ varies in a
small neighborhood of τk. Next, we turn to show

d(Reλ)
dτ

|τ=τk
> 0.
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This will signify that there exists at least one eigenvalue with positive real
part for τ > τk. Differentiating the transcendental equation (3.3) with respect
τ , we get

[(3λ2 + 2A1λ + A2) + e−λτ (2B1λ + B2)− τe−λτ (B1λ
2 + B2λ + B3)]

dλ

dτ

= (B1λ
2 + B2λ + B3)e−λτλ.

Thus,
(

dλ

dτ

)−1

=
3λ2 + 2A1λ + A2

λe−λτ (B1λ2 + B2λ + B3)
+

2B1λ + B3

λ(B1λ2 + B2λ + B3)
− τ

λ

=
3λ2 + 2A1λ + A2

−λ(λ3 + A1λ2 + A2λ + B3)
+

2B1λ + B3

λ(B1λ2 + B2λ + B3)
− τ

λ

=
2λ3 + A1λ

2 −A2

−λ2(λ3 + A1λ2 + A2λ + A3)
+

B1λ
2 −B3

λ2(B1λ2 + B2λ + B3)
− τ

λ
.

Therefore,

Θ =sign
[
Re(

2λ3 + A1λ
2 −A2

−λ2(λ3 + A1λ2 + A2λ + A3)
+

B1λ
2 −B3

λ2(B1λ2 + B2λ + B3)
− τ

λ
)
]

λ=iω0

=
1
ω2

0

sign
[
Re(

(A3 + A1ω
2
0) + i2ω3

0

(A1ω2
0 −A3) + i(ω3

0 −A3ω0)
) +

B1ω
2
0 + B3

(B3 −B1ω2
0) + iB3ω0

]

=
1
ω2

0

sign
[
(A3 + A1ω

2
0)(A1ω

2
0 −A3) + 2ω3

0(ω3
0 −A2ω0)

(A1ω2
0 −A3)2 + (ω3

0 −A2ω0)2

+
(B1ω

2
0 + B3)(B3 −B1ω

2
0)

(B3 −B1ω2
0)2 + (B2ω2

0)2

]

=
1
ω2

0

sign
[
2ω6

0 + (A2
1 − 2A2 −B2

1)ω4
0 + (B2

3 −A2
3)

(B3 −B1ω2
0)2 + (B2ω2

0)2

]
.

As A2
1−2A2−B2

1 and B2
3 −A2

3 are both positive by virtue of (H5) and (H4)
respectively, we have

d(Reλ)
dτ

|ω=ω0,τ=τk
> 0.

Therefore, the transversality condition holds and hence Hopf bifurcation
occurs at ω = ω0, τ = τk. ¤

Remark 3.1. It must be pointed out that Theorem 3.1 cannot determine the
stability of bifurcation periodic orbits, that is, the periodic solutions may exist
either for τ > τ0 or for τ < τ0, near τ0. Further, we can investigate the stability
of bifurcating periodic orbits by analyzing higher-order terms. The calculation
is very complex and the method is trivial, so we omit it.

Next, we consider that the time delay induces switching of stability.
Consider the following characteristic equation:

(3.9) P (λ) + Q(λ)e−τλ = 0,
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where P and Q are polynomials with real coefficients of degree n and m re-
spectively, and τ is a nonnegative constant. For such a transcendental equa-
tion (3.9), Cooke et al. [7] obtained the following result.

Lemma 3.3. Consider Eq.(3.9), where P and Q are analytic functions in a
right half-plane Re z > −ϑ, ϑ > 0, which satisfy the following conditions.

(1) P (λ) and Q(λ) have no common imaginary zero.
(2) P (−iy) = P (iy), Q(−iy) = Q(iy) for real y (−denotes a complex

conjugate).
(3) P (0) + Q(0) 6= 0.
(4) There are at most a finite number of roots of (3.9) in the right half-plane

when τ = 0.
(5) F (y) = |P (iy)|2− |Q(iy)|2 for real y, has at most a finite number of real

zeros.
Under these conditions, the following statements are true.
(a) Suppose that the equation F (y) = 0 has no positive roots. Then if (3.9)

is stable at τ = 0 it remains stable for all τ ≥ 0, whereas if it is unstable at
τ = 0 it remains unstable for all τ ≥ 0.

(b) Suppose that the equation F (y) = 0 has at least one positive root and
that each positive root is simple. As τ increases, stability switches may occur.
There exists a positive number τ∗ such that Eq.(3.9) is unstable for all τ > τ∗.
As τ varies from 0 to τ∗, at most a finite number of stability switches may
occur.

We rewrite characteristic equation (3.3) in the following form:

P (λ) + Q(λ)e−τλ = 0,

where P (λ) = λ3 + A1λ
2 + A2λ + A3, Q(λ) = B1λ

2 + B2λ + B3.
We state the following result.

Theorem 3.3. Suppose the conditions (H1), (H2) and (H3) are satisfied. Fur-
ther assume that (i) P3 < 0 and (ii) either P 2

1 < 3P2 or both P2 > 0 and P1 > 0.
Then stability switches may occur as τ increases and eventually interior equi-
librium becomes unstable.

Proof. In our model (1.4), P (λ) = λ3 + A1λ
2 + A2λ + A3, Q(λ) = B1λ

2 +
B2λ+B3. Clearly, P (λ) and Q(λ) have no common imaginary root. Obviously
P (−iy) = P (iy), Q(−iy) = Q(iy) for real y. Also P (0) + Q(0) = 0 since
A3 + B3 6= 0. Now lim sup[|Q(λ)/P (λ)| : |λ| → ∞, Reλ ≥ ∞] < 1. We
have F (y) = |P (iy)|2 − |Q(iy)|2 = y6 + P1y

4 + P2y
2 + P3 = 0, where P1 =

A2
1− 2A2−B2

1 , P2 = A2
2−B2

2 − 2A1A3 +2B1B3, P3 = A2
3−B2

3 . Since F (y) is
of even degree and the last term of F (y) is negative, so F (y) must have at least
one positive root. Conditions of the theorem imply that each positive root is
simple. This completes the proof. ¤
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4. Estimation of the length of delay to preserve stability

We consider the system (1.4) and the space of all real valued continuous
functions defined on [−τ,∞) satisfying the initial conditions (1.5) on [−τ, 0].
We linearize the system (1.4) about its interior equilibrium E2(S2, I2, y2) and
get

(4.1)





Ṡ = −rS2

K
S − βS2I(t− τ),

İ = βI2S + βS2I(t− τ)−
[

cmy2
2

(my2 + I2)2
+ µ

]
I − cI2

2

(my2 + I2)2
y,

ẏ =
δ

h
I − δy.

Taking Laplace transform of the system given by (4.1), we get

(4.2)





(
ς +

rS2

K

)
LS(ς) = −βS2e

−ςτLI(ς)− βS2e
−ςτK1(ς) + LS(0),

(
ς +

cmy2
2

(my2 + I2)2
+ µ− βS2

)
LI(ς) = βI2LS(ς) + βS2e

−ςτK1(ς)

− cI2
2

(my2 + I2)2
Ly(ς) + LI(0),

(ς + δ)Ly(ς) =
δ

h
LI(ς) + Ly(0),

where

K1(ς) =
∫ 0

−τ

e−ςtPI(t)dt,

and LT , LI and Ly are the Laplace transform of S(t), I(t) and y(t), respectively.
Following along the lines of [9] and using Nyquist criterion, it can be shown

that the conditions for local asymptotic stability of E2(S2, I2, y2) are given by

(4.3) Im H(iη0) > 0,

(4.4) Re H(iη0) = 0,

where H(ς) = ς3 + A1ς
2 + A2ς + A3 + e−ςt(B1ς

2 + B2ς + B3) and η0 is the
smallest positive root of (4.4).

In our case, (4.3) and (4.4) gives

(4.5) A3 −A1η
2
0 = B1η

2
0 cos(η0τ)−B3 cos(η0τ)−B2η0 sin(η0τ),

(4.6) A2η0 − η3
0 > −B1η

2
0 sin(η0τ) + B3 sin(η0τ)−B2η0 cos(η0τ).

(4.5) and (4.6), if satisfied simultaneously, are sufficient conditions to guarantee
stability. We shall utilize them to get an estimate on the length of delay. Our
aim is to find an upper bound η+ on η0, independent of τ and then to estimate
τ so that (4.6) holds for all values of η, 0 ≤ η ≤ η+ and hence in particular at
η = η0. We rewrite (4.5) as

(4.7) A1η
2
0 = A3 + B3 cos(η0τ) + B2η0 sin(η0τ)−B1η

2
0 cos(η0τ).
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Maximizing A3 + B3 cos(η0τ) + B2η0 sin(η0τ) − B1η
2
0 cos(η0τ) subject to

| sin(η0τ)| ≤ 1, | cos(η0τ)| ≤ 1 we obtain

(4.8) A1η
2
0 ≤ A3 + |B3|+ |B2|η0 + |B1|η2

0 .

Hence, if

(4.9) η+ =
|B2|+

√
B2

2 + 4(A1 − |B1|)(A3 + |B3|)
2(A1 + |B1|) ,

then clearly from (4.8) we have η0 ≤ η+.
From (4.5) we obtain

(4.10) η2
0 < A2 + B1η0 sin(η0τ) + B2 cos(η0τ)−B3

sin(η0τ)
η0

.

As E2 is locally asymptotically stable for τ = 0, therefore sufficiently small
τ > 0, (4.19) will continue to hold. Substituting (4.7) in (4.10) and rearranging
we get,
(4.11)

(B3 −A1B2 −B1η
2
0)[cos(η0τ)− 1] +

[
(B2 −A1B1)η0 +

A1B3

η0

]
sin(η0τ)

< A1A2 −A3 −B3 + A1B2 + B2
1η0.

Using the bounds

(B3 −A1B2 −B1η
2
0)[cos(η0τ)− 1]

= 2(B3 −A1B2 −B1η
2
0) sin2

(η0τ

2

)

≤ 1
2
|B3 −A1B2 −B1η

2
+|η2

+τ2

and [
|B2 −A1B1|η0 +

A1B3

η0

]
sin(η0τ) ≤ [(B2 −A1B1)η2

+ + A1|B3|]τ,

we obtain from (4.11)
K1τ

2 + K2τ < K3,

where
K1 = 1

2 |B3 −A1B2 −B1η
2
+|η2

+,
K2 = (B2 −A1B1)η2

+ + A1|B3|,
K3 = A1A2 −A3 −B3 + A1B2 + B2

1η+.

Hence, if τ+ = 1
2K1

(−K2 +
√

K2
2 + 4K1K3), then stability is preserved for

0 ≤ τ ≤ τ+. Thus we are now in a position to state the following theorem.

Theorem 4.1. If there exists a τ in 0 ≤ τ ≤ τ+ such that K1τ
2 + K2τ <

K3, then τ+ is the maximum value (length of delay) of τ for which E2 is
asymptotically stable.
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5. Permanence

From biological point of view, persistence of a system means the survival of
all populations of the system in future time. Mathematically, persistence of a
system means that strictly positive solutions do not have omega limit points
on the boundary of the non-negative cone. Butler et al. [4], Freedman and
Waltman [8, 10] developed the following definition of persistence:

Definition 5.1. System (1.4) is said to be permanence if there are positive
constants m, M such that each positive solution (S(t), I(t), y(t)) of system (1.4)
with initial conditions satisfies

m ≤ lim
t→+∞

inf S(t) ≤ lim
t→+∞

supS(t) ≤ M,

m ≤ lim
t→+∞

inf I(t) ≤ lim
t→+∞

sup I(t) ≤ M,

m ≤ lim
t→+∞

inf y(t) ≤ lim
t→+∞

sup y(t) ≤ M.

In order to prove permanence of system (1.4), we present the permanence
theory for infinite dimensional system from Theorem 4.1 in [11]. Let X be a
complete metric space. Suppose that X0 ∈ X, X0 ∈ X, X0 ∩X0 = ∅. Assume
that T (t) is a C0 semigroup on X satisfying

(5.1)
T (t) : X0 → X0,
T (t) : X0 → X0.

Let Tb(t) = T (t) |X0 and let Ab be the global attractor for Tb(t).

Lemma 5.1 ([11]). Suppose that T (t) satisfies (5.1) and we have the following:
(i) there is a t0 ≥ 0 such that T (t) is compact for t > t0;
(ii) T (t) is point dissipative in X;
(iii) Ab = ∪x∈Ab

ω(x) is isolated and has an acyclic covering M , where

M = {M1,M2, . . . ,Mn};
(iv) W s(Mi) ∩X0 = ∅ for i = 1, 2, . . . , n.

Then X0 is a uniform repellor with respect to X0, i.e., there is an ε > 0 such
that, for any x ∈ X0, limt→+∞ inf d(T (t)x,X0) ≥ ε, where d is the distance of
T (t)x from X0.

Theorem 5.1. If βK > µ, then system (1.4) is permanent.

Proof. We begin by showing that the boundary planes of R3
+ repel the positive

solutions to system (1.4) uniformly. Let us define

C0 = {(ϕ1, ϕ2, ϕ3) ∈ C([−τ, 0], R3
+) : ϕ3(θ) = 0, ϕ1(θ) 6= 0 and ϕ2(θ) 6= 0}.

If C0 = intC([−τ, 0], R3
+), it is suffices to show that there exists an ε0 such that

for all solution ut of system (1.4) initiating from C0, lim inft→∞ d(ut, C0) ≥ ε0.
To this end, we verify below that the conditions of Lemma 5.1 are satisfied.
It is easy to see that C0 and C0 are positive invariant. Moreover, conditions
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(i) and (ii) of Lemma 5.1 are clearly satisfied. Thus, we only need to verify
conditions (iii) and (iv).

There is a constant solution E1 in C0. If (S(t), I(t), y(t)) is a solution of
system (1.4) initiating C0, to S(t) = S1, I(t) = I1, y = 0, where S1 = µ

β , I1 =
r
β (1 − µ

βK ). If (S(t), I(t), y(t)) is a solution of system (1.4) initiating from
C0, then S(t) → S1, I(t) → I1, y → 0 as t → +∞. It is obvious that E1

is isolated invariant. Now, we show that W s(E1) ∩ C0 = ∅. Assuming the
contrary, then there exists a positive (S̃(t), Ĩ(t), ỹ(t)) of system (1.4) such that
(S̃(t), Ĩ(t), ỹ(t)) → (S1, I1, 0) as t → +∞. Choosing ξ > 0 small enough such
that I1 − ξ > 0 when βK > µ. Let t0 > 0 be sufficiently large such that
I1 − ξ < Ĩ(t) < I1 + ξ for t ≥ t0 − τ. Then we have, for t ≥ t0,

dỹ

dt
≥ δỹ

(
1− hỹ

I1 − ξ

)
.

It is easy to prove that ỹ(t) ≥ I1−ξ
h when I1 − ξ > 0. This is a contradiction.

Hence, W s(E1) ∩ C0 = ∅.
Therefore, we are able to conclude from Lemma 5.1 that C0 repels the pos-

itive solutions of system (1.4) uniformly, then the conclusion of Theorem 5.1
follows. ¤

6. Numerical study of the system behavior

We have gained analytical understanding of possible dynamics of this non-
linear delay differential equation model to some extent. We now perform some
simulation work (using MATLAB dde23) with hypothetical set of parameters
given in Table 1 and initial values S(0) = 15, I(0) = 10, y(0) = 20 for better
understanding of our analytical treatment. In fact we have considered dif-
ferent values of the delay factor (τ) to observe biologically plausible different
dynamical scenarios of the model, enough to merit the mathematical study.

Table 1: Parameter values used for simulation
Parameter Values
r (intrinsic birth rate of the sound prey) 0.1
K (carrying capacity of the sound prey) 500
β (infection rate) 0.001
µ (death rate of the infected prey) 0.03
c (the maximum value of the per capita reduction rate of predator due to prey) 8
m (half saturation constant) 150
δ (intrinsic growth rate of the predator) 0.2
h (the maximum value of the per capita reduction rate of prey due to predator) 0.5

First we observe that without delay there exits a unique interior equilibrium
point E2 (83.15614618, 83.36877076, 166.7375415) with the set of parameter
values from Table 1. Positive steady state E2 is locally asymptotically sta-
ble, since the eigenvalues associated with the variational matrix of the sys-
tem (1.4) at E2, given by (−0.2006433278, −0.007905651446−0.08379142400i,
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Fig.1: Time evolution of all the population for the model (1.4) with τ = 0.
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Fig.2: Time evolution of all the population for the model (1.4) with τ = 1.
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Fig.3: Time evolution of all the population for the model (1.4) with τ = 8.
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Fig.4: Time evolution of all the population for the model (1.4) with τ = 200.
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−0.007905651446+0.08379142400i) have negative real parts. Simulation of the
model in this situation with τ = 0, produce stable dynamics and is presented in
Fig. 1. With the same set of parameters, we see that P3(−0.000001135012312)
< 0 and P1(0.04017661904) > 0, which indicates the existence of a positive
root. Solving (3.6) and (3.7) numerically, we see that there exist one simple
positive root of, namely, 0.07369188011(= ω0). Hence, by Theorem 3.3, we
can say that as τ increases, stability switch may occur. The value of τ where
stability switch occurs (in our case) is τ0 = 3.337326353, which can be easily
calculated using (3.6) and (3.7). Hence, by Butler’s lemma, E2 remains stable
for τ < τ0 (= 3.337326353), which can be seen in Figs. 1 and 2 and which
are the solutions of the system (1.4) for τ = 0 and τ = 1, respectively. As τ
increases through τ = τ0 = 3.337326353, a periodic solution occurs which is
the case of Hopf bifurcation. The importance of Hopf bifurcation in this con-
text is that at the bifurcation point a limit cycle (see Fig. 3) is formed around
the fixed point, thus resulting in stable periodic solutions. No more stability
switches occur and for τ > τ0= 3.337326353, E2 is unstable, with increasing
oscillations. It is interesting to observe that for sufficiently large τ , the system
(1.4) remains unstable but show limit cycle with complex structure (Fig. 4).
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