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GROWTH AND FIXED POINTS OF
MEROMORPHIC SOLUTIONS OF HIGHER-ORDER

LINEAR DIFFERENTIAL EQUATIONS

Jun-Feng Xu and Hong-Xun Yi

Abstract. In this paper, we investigate the growth and fixed points of
meromorphic solutions of higher order linear differential equations with
meromorphic coefficients and their derivatives. Because of the restriction
of differential equations, we obtain that the properties of fixed points of
meromorphic solutions of higher order linear differential equations with
meromorphic coefficients and their derivatives are more interesting than
that of general transcendental meromorphic functions. Our results extend
the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K.
Langley and Z. Chen and K. Shon.

1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the funda-
mental results and the standard notation of the Nevanlinna value distribution
theory of meromorphic functions (see [13, 21]). The term “meromorphic func-
tion” will mean meromorphic in the whole complex plane C. In addition, we
will use notations σ(f) to denote the order of growth of a meromorphic func-
tion f(z), λ(f) to denote the exponents of convergence of the zero-sequence of
a meromorphic function f(z), λ(f) to denote the exponents of convergence of
the sequence of distinct zeros of f(z).

In order to give some estimates of fixed points, we recall the following defi-
nitions (see [3, 16]).

Definition 1.1. Let z1, z2, . . . , (|zj | = rj , 0 ≤ r1 ≤ r2 ≤ · · · ) be the sequence
of distinct fixed points of transcendental meromorphic function f . Then τ(f),
the exponent of convergence of the sequence of distinct fixed points of f , is
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defined by

τ(f) = inf{τ > 0 |
∞∑

j=1

|zj |−τ < +∞}.

It is evident that τ(f) = lim
r→∞

log N(r, 1
f−z )

log r and τ(f) = λ(f − z).
For the second order linear differential equation

(1) f ′′ + e−zf ′ +B(z)f = 0,

where B(z) is an entire function of finite order, it is well known that each
solution f of (1) is an entire function. If f1 and f2 are any two linearly in-
dependent solutions of (1), then at least one of f1, f2 must have infinite order
([14]). Hence, “most” solutions of (1) will have infinite order.

Thus a natural question is: what condition on B(z) will guarantee that
every solution f 6≡ 0 of (1) will have infinite order? Frei, Ozawa, Amemiya
and Langley, and Gundersen studied the question. For the case that B(z) is a
transcendental entire function, Gundersen [10] proved that if ρ(B) 6= 1, then
for every solution f 6≡ 0 of (1) has infinite order.

For the above question, there are many results for second order linear differ-
ential equations (see for example [1, 2, 7, 8, 12, 17]). In 2002, Chen considered
the problem and obtained the following result in [2].

Theorem A. Let a, b be nonzero complex numbers and a 6= b, Q(z) 6≡ 0 be a
nonconstant polynomial or Q(z) = h(z)ebz, where h(z) is a nonzero polynomial.
Then every solution f 6≡ 0 of the equation

f ′′ + ebzf ′ +Q(z)f = 0

has infinite order.

In 2005, Chen [5] investigated the more general equation with meromorphic
coefficients, and obtained the following result.

Theorem B. Let Aj(z)(6≡ 0) (j = 0, 1) be meromorphic functions with σ(Aj)<
1, a, b be nonzero complex numbers and arg a 6= arg b or a = cb (0 < c < 1).
Then every solution f 6≡ 0 of the equation

(2) f ′′ +A1(z)eazf ′ +A0(z)ebzf = 0

has infinite order.

In this paper, we continue the research in the direction and obtain the fol-
lowing result which greatly extends the previous results of M. Frei, M. Ozawa,
G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

Theorem 1.1. Suppose that Aj 6≡ 0 (j = 0, 1, . . . , k − 1) be meromorphic
functions with σ(Aj) < 1 (j = 0, 1, . . . , k − 1). Let a0, a1, . . . , ak−1 be nonzero
complex constants such that for (i) arg aj = arg a0 and aj = cja0 (0 < cj < 1)
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or (ii) arg aj 6= arg a0 (j = 0, 1, . . . , k−1). Then for k ≥ 2, every transcendental
meromorphic solution f(6≡ 0) of the equation

(3) f (k) +Ak−1e
ak−1zf (k−1) + · · ·+A1e

a1zf ′ +A0e
a0zf = 0.

have infinite order.

Remark 1.2. In (i), if cj = c (0 < c < 1), then (i) becomes aj = ca0 mod 2π,
j = 1, 2, . . . , k− 1. Obviously, Theorem 1.1 generalizes Theorem B to the high
order differential equation and ([6]), Theorem 1.5 from the entire coefficients
to meromorphic ones.

Since the beginning of the last four decades, a substantial number of research
articles have been written to describe the fixed points of general transcendental
meromorphic functions (see [23]). However, there are few studies on the fixed
points of solutions of the general differential equation. In [3], Z. X. Chen first
studied the problems on the fixed points of solutions of second order linear
differential equations with entire coefficients. Since then, Wang and Yi [20,
19], Laine and J. Rieppo [16], Chen and Shon [5] studied the problems on
the fixed points of solutions of second order linear differential equations with
meromorphic coefficients and their derivatives. The other main purpose of
this paper is to extend some results in [5] to the case of higher order linear
differential equations with meromorphic coefficients.

Theorem C. Let Aj(z), a, b, c satisfy the additional hypotheses of Theorem 1.1.
If f 6≡ 0 is any meromorphic solution of the equation (2), then f, f ′, f ′′ all have
infinitely fixed points and satisfy

τ̄(f) = τ̄(f ′) = τ̄(f ′′) = ∞.

Remark 1.3. In the proof of Theorem C, the authors gave an important lemma,
see [5], Lemma 7, to prove the conclusion. However it seems too complicated to
deal with the high differential equations. In this paper, we use the Lemma 2.1
in Section 2 to solve the difficulty easily.

Theorem 1.4. Let Aj(z), aj , cj satisfy the additional hypotheses of Theo-
rem 1.1. If f 6≡ 0 is any meromorphic solution of the equation (3), then f, f ′, f ′′

all have infinitely fixed points and satisfy

τ̄(f) = τ̄(f ′) = τ̄(f ′′) = ∞.

2. Lemmas

The linear measure of a set E ⊂ [0,+∞) is defined as m(E) =
∫ +∞
0

χE(t) dt.
The logarithmic measure of a set E ⊂ [1,+∞) is defined by

lm(E) =
∫ +∞

1

χE(t)/t dt,
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where χE(t) is the characteristic function of E. The upper and lower densities
of E are

densE = lim sup
r→+∞

m(E ∩ [0, r])
r

, densE = lim inf
r→+∞

m(E ∩ [0, r])
r

.

The following lemma, due to Gross [9], is important in the factorization and
uniqueness theory of meromorphic functions, playing an important role in this
paper as well.

Lemma 2.1 ([9, 22]). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are mero-
morphic functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the
following conditions:

(i)
n∑

j=1

fj(z)egj(z) ≡ 0.

(ii) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n.
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈

E).

Then fj(z) ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.2 ([11]). Let f be a transcendental meromorphic function of finite
order σ. Let ε > 0 be a constant, and k and j be integers satisfying k > j ≥ 0.
Then the following two statements hold:

(a) There exists a set E1 ⊂ (1,∞) which has finite logarithmic measure,
such that for all z satisfying |z| 6∈ E1

⋃
[0, 1], we have

(4)
∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).

(b) There exists a set E2 ⊂ [0, 2π) which has linear measure zero, such that
if θ ∈ [0, 2π)−E2, then there is a constant R = R(θ) > 0 such that (4)
holds for all z satisfying arg z = θ and R ≤ |z|.

Lemma 2.3. Let f(z) = g(z)/d(z), where g(z) is transcendental entire, and
let d(z) be the canonical product (or polynomial) formed with the non-zero poles
of f(z). Then we have

f (n) =
1
d

[
g(i) +Bi,i−1g

(k−1) + · · ·+Bi,1g
′ +Bi,0g

]
,

where Bi,j are defined as a sum of a finite number of terms of the type

∑

(j1···ji)

Cjj1···ji

(
d′

d

)j1

· · ·
(
d(i)

d

)ji

,

Cjj1···ji are constants, and j + j1 + 2j2 + · · ·+ iji = n.

Using mathematical induction, we can easily prove the lemma.
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Lemma 2.4 ([2]). Let g(z) be a meormorphic function with σ(g) = β < ∞.
Then for any given ε > 0, there exists a set E ⊂ [0, 2π) that has linear measure
zero, such that if ψ ∈ [0, 2π)\E, then there is a constant R = R(ψ) > 1 such
that, for all z satisfying arg z = ψ and |z| = r > R, we have

exp{−rβ+ε} ≤ |g(z)| ≤ exp{rβ+ε}.
Lemma 2.5 ([18]). Consider g(z) = A(z)eaz, where A(z)( 6≡ 0) is a meromor-
phic function with σ(A) = α < 1, a is a complex constant, a = |a|eiϕ(ϕ ∈
[0, 2π)). Set E0 = {θ ∈ [0, 2π) : cos(ϕ+ θ) = 0}, then E0 is a finite set. Then
for any given ε (0 < ε < 1 − α), there is a set E1 ∈ [0, 2π) that has linear
measure zero, if z = reiθ, θ\(E0

⋃
E1), then we have when r is sufficiently

large:
(i) If cos(ϕ+ θ) > 0, then

exp{(1− ε)rδ(az, θ))} ≤ |g(z)| ≤ exp{(1 + ε)rδ(az, θ))};
(ii) If cos(ϕ+ θ) < 0, then

exp{(1 + ε)rδ(az, θ))} ≤ |g(z)| ≤ exp{(1− ε)rδ(az, θ))};
where δ(az, θ) = |a| cos(ϕ+ θ).

Lemma 2.6 ([4]). Let A0, A1, . . . , Ak−1, F 6≡ 0 are finite order meromorphic
function. If f(z) is an infinite order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F,

then f satisfies λ(f) = λ(f) = σ(f) = ∞.

3. Proof of Theorem 1.1

First of all we prove that the equation (3) can’t have a meromorphic solution
f 6≡ 0 with σ(f) < 1. Assume a meromorphic function f 6≡ 0 with σ(f) =
σ1 < 1 satisfies the equation (3). Then σ(f (j)) = σ1 < 1 (j = 1, 2, . . . , k −
1). By Lemma 2.4, for any given ε1 (0 < 3ε1 < min{1 − σ1,

1−c
2 }), c =

max1≤j≤k−1{cj}, there is a set E1 ∈ [0, 2π) that has linear measure zero, such
that if θ ∈ [0, 2π)\E1, then there is a constant R > 1, such that for all arg z = θ
and |z| = r > R, we have

(5) |f (j)| ≤ exp{rσ1+ε1}.
If arg aj 6= arg a0 (j = 1, 2, . . . , k − 1), then from Lemma 2.5 and σ(Ajf

(j)) <
1 (j = 0, 1, . . . , k − 1), we know that for the above ε1, there is a ray arg z =
θ0 ∈ [0, 2π)\(E1

⋃
E2

⋃
E0), where E2 ∈ [0, 2π) that has linear measure zero,

E0 = {θ ∈ [0, 2π) : δ(ajz, θ) = 0(j 6= 0) or δ(a0z, θ) = 0},
where δ(ajz, θ) = |aj | cos(arg aj + θ0) (j 6= 0), δ(a0z, θ) = |a0| cos(arg a0 + θ0),
such that Re{ajz} = δ(ajz, θ0)r < 0, Re{a0z} = δ(a0z, θ0)r > 0. For a
sufficiently large r, combining with (5) we have

(6) |A0(reiθ0)ea0reiθ0
f(reiθ0)| ≥ exp{(1− ε1)δ(ajz, θ0)r},
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(7) ∣∣f (k)(reiθ0) +Ak−1(reiθ0)eak−1reiθ0
f (k−1)(reiθ0) + · · ·+A1(r1eiθ0)ea1reiθ0

f ′(reiθ0)
∣∣

≤ exp{rσ1+ε1}+
k−1∑

j=1

exp{(1− ε1)δ(ajz, θ0)r}

≤ exp{rσ1+ε1}+ 1,

By (3), (6), and (7), we have

exp{(1− ε1)δ(ajz, θ0)r} ≤ exp{rσ1+ε1}+ 1.

This is absurd by σ1 + ε1 < 1.
If arg aj = arg a0, and aj = cja0 (0 < cj < 1), then δ(ajz, θ) = cjδ(a0z, θ)

for z = reiθ. Using the same reasoning as above, we know that there is a ray
arg z = θ0 ∈ [0, 2π)\(E1

⋃
E2

⋃
E0) satisfying δ(ajz, θ0) = cjδ(a0z, θ0) > 0,

and for the above ε1 and a sufficiently large r, we have
(8)

exp{(1− ε1)δ(ajz, θ0)r} ≤ |A0(reiθ0)ea0reiθ0
f(r0eiθ0)|

≤ |f (k) +Ak−1(reiθ0)eak−1reiθ0
f (k−1)(reiθ0) + · · ·

+A1(reiθ0)ea1reiθ0
f ′(reiθ0)|

≤ exp{rσ1+ε1}+ exp{(1− ε1)cjδ(ajz, θ0)r}
≤ exp{rσ1+ε1} exp{(1− ε1)cjδ(ajz, θ0)r}.

By (8), we can get

exp
{

1− c

2
δ(ajz, θ0)r

}
≤ exp{rσ1+ε1}.

This is a contradiction. Hence σ(f) ≥ 1. ¤

Now assume f is a meromorphic function of the equation (3) with 1 ≤ σ(f) =
σ <∞. From the equation (3), we know that the poles of f(z) can occur only
at the poles of Aj (j = 0, 1, . . . , k−1). Let f = g/d, d be the canonical product
formed with the nonzero poles of f(z), with σ(d) = β ≤ α = max{σ(Aj) : j =
0, 1, . . . , k − 1} < 1, g be an entire function and 1 ≤ σ(g) = σ(f) = σ < ∞.
Substituting f = g/d into (3), by Lemma 2.3 we can get
(9)

g(k) + g(k−1)
[
Ak−1e

ak−1z +Bk,k−1

]
+ · · ·+g′[A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 +Bk,1

]

+ g
[
A0e

a0z +
k−1∑

i=1

Aie
aizBi,1 +Bk,0

]
= 0.

By Lemma 2.2, for any given ε (0 < 3ε < min{1 − α, 1−c
6 }, c = max{cj , 1 ≤

j ≤ k − 1}), there exists a set E ∈ [0, 2π) that has linear measure zero, such
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that if θ ∈ [0, 2π) \ E, then there is a constant R0 = R0(θ) > 1, such that for
all z satisfying arg z = θ and |z| ≥ R0, we have

(10)
g(j)(z)
g(z)

≤ |z|k(σ−1+ε), (j = 1, 2, . . . , k)

and

(11)
d(j)(z)
d(z)

≤ |z|k(β−1+ε), (j = 1, 2, . . . , k).

Setting z = reiθ, then

(12) Re{ajz} = δ(ajz, θ)r, Re{a0z} = δ(a0z, θ)r.

Now suppose that arg aj 6= arg a0 (j = 1, 2, . . . , k − 1). In view of Lemma 2.5
and (12), it is easy to see for the above ε there is a ray arg z = θ such that
θ ∈ [0, 2π)\(E1

⋃
E2

⋃
E0) (where E2 and E0 are defined as in Lemma 2.5,

E1

⋃
E2

⋃
E0 is of linear measure zero) satisfying δ(ajz, θ) < 0, cjδ(a0z, θ) > 0,

and for a sufficiently large r, we have

(13) |A0(reiθ)ea0reiθ

f(reiθ)| ≥ exp{(1− ε)δ(a0z, θ)r},

(14) |Aj(reiθ)eajreiθ | ≤ exp{(1− ε)δ(ajz, θ)r} (j = 1, . . . , k − 1).

By (11), (13), and (14), we have

(15)
∣∣Ak−1e

ak−1z +Bk,k−1

∣∣ ≤ exp{(1− ε)δ(ajz, θ)r}+Mrk(β−1+ε), . . . ,

(16)
∣∣A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 +Bk,1

∣∣ ≤ exp{(1− ε)δ(ajz, θ)r}+Mrk(β−1+ε),

and

(17)
∣∣A0e

a0z +
k−1∑

i=1

Aie
aizBi,1 +Bk,0

∣∣ ≥ exp{(1− ε)δ(a0z, θ)r}(1− o(1)),

where M > 0 is a constant, it can be different in different occurrences.
By (9), (10), and (15)-(17), we have

exp{(1− ε)δ(a0z, θ)r}(1− o(1))

≤
∣∣A0e

a0z +
k−1∑

i=1

Aie
aizBi,1 +Bk,0

∣∣

≤
∣∣∣∣
g(k)(z)
g(z)

∣∣∣∣ +
∣∣∣∣
g(k−1)(z)
g(z)

(
Ak−1e

ak−1z +Bk,k−1

)∣∣∣∣ + · · ·

+
∣∣∣∣
g′(z)
g(z)

(
A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 +Bk,1

)∣∣∣∣

≤ rk(σ−1+ε) + r(k−1)(σ−1+ε)
[
exp{(1− ε)δ(ajz, θ)rj}+Mrk(β−1+ε)

]
+ · · ·
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+ r(σ−1+ε)
[
exp{(1− ε)δ(ajz, θ)rj}+Mrk(β−1+ε)

]

≤ rM .

This is absurd which implies σ(g) = ∞, i.e., σ(f) = ∞. ¤

Now suppose that arg aj = arg a0, and aj = cja0 (0 < cj < 1); then
δ(ajz, θ) = cjδ(a0z, θ), Re{ajz} = cjRe{a0z}. Using the same argument as
above, we know that (10), (11) hold. Moreover, there is a ray arg z = θ
satisfying δ(ajz, θ) = cjδ(a0z, θ) > 0, then for a sufficiently large r, we have
(13) and

(18) |Aj(reiθ)eajreiθ | ≤ exp{(1 + ε)cjδr(a0z, θ)} (j = 1, . . . , k − 1).

By (11), (13), and (18), we have

(19)
∣∣Ak−1e

ak−1z +Bk,k−1

∣∣ ≤ exp{(1 + ε)cjδ(a0z, θ)r}, . . . ,

(20)
∣∣A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 +Bk,1

∣∣ ≤ exp{(1 + ε)cjδ(a0z, θ)r},

and

(21)
∣∣A0e

a0z +
k−1∑

i=1

Aie
aizBi,1 +Bk,0

∣∣ ≥ exp{(1− ε)δ(a0z, θ)r}(1− o(1)).

By (9), (10), and (19)-(21), we have

exp{(1− ε)δ(a0z, θ)r}(1− o(1))

≤ ∣∣A0e
a0z +

k−1∑

i=1

Aie
aizBi,1 +Bk,0

∣∣

≤
∣∣∣∣
g(k)(z)
g(z)

∣∣∣∣ +
∣∣∣∣
g(k−1)(z)
g(z)

(
Ak−1e

ak−1z +Bk,k−1

)∣∣∣∣ + · · ·

+
∣∣∣∣
g′(z)
g(z)

(
A1e

a1z +
k−1∑

i=2

Aie
aizBi,1 +Bk,1

)∣∣∣∣

≤ rk(σ−1+ε) + r(k−1)(σ−1+ε) exp{(1 + ε)cjδ(a0z, θ)r}(1 + o(1)) + · · ·
+ r(σ−1+ε) exp{(1 + ε)cjδ(a0z, θ)r}(1 + o(1))

≤ Mrk(σ−1+ε) exp{(1 + ε)cjδ(a0z, θ)r}(1 + o(1)).

From this and 3ε < 1−c
6 , we get

exp
{

1− c

2
rδ(a0z, θ)

}
≤Mrk(σ−1+ε).

It is a contradiction. The proof of Theorem 1.1 is completed. ¤



GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS 755

4. Proof of Theorem 1.4

Assume f( 6≡ 0) is a meromorphic function of (3); then σ(f) = ∞ by The-
orem 1.1. Set g0(z) = f(z) − z, then z is a fixed point of f(z) if and only if
g0(z) = 0. g0(z) is a meromorphic function and σ(g0) = σ(f) = ∞. Substitut-
ing f = g0 + z into (3), we have

(22) g(k)
0 +Ak−1e

ak−1zg
(k−1)
0 +· · ·+A1e

a1zg′0+A0e
a0zg0 = −A1e

a1z−zA0e
a0z.

We can rewrite (22) as the following form:

g
(k)
0 + h0,k−1g

(k−1)
0 + · · ·+ h0,1g

′
0 + h0,0g0 = −h0,1 − zh0,0.

Obviously, h0 = −[h1,0 + zh0,0] = −A1e
a1z − zA0e

a0z 6≡ 0. Here we just
consider the meromorphic solutions of infinite order satisfying g0 = f − z, by
Lemma 2.6 we know that λ̄(g0) = τ̄(f) = ∞ holds.

Now we consider the fixed points of f ′(z).
Let g1(z) = f ′ − z. Then z is a fixed point of f ′(z) if and only if g1(z) = 0.

g1(z) is a meromorphic function and σ(g1) = σ(f ′) = σ(f) = ∞. Differentiat-
ing both sides of the equation (3), we have

(23)

f (k+1) +Ak−1e
ak−1zf (k) + [(Ak−1e

ak−1z)′ +Ak−2e
ak−2z]f (k−1)

+ · · ·+ [(A3e
a3z)′ +A2e

a2z]f ′′′ + [(A2e
a2z)′ +A1e

a1z]f ′′

+ [(A1e
a1z)′ +A0e

a0z]f ′ + (A0e
a0z)′f = 0.

By (3), we have

(24) f = − 1
A0ea0z

[
f (k) +Ak−1e

ak−1zf (k−1) + · · ·+A2e
a2zf ′′ +A1e

a1zf ′
]
.

Substituting (24) into (23), we have
(25)

f (k+1) + [Ak−1e
ak−1z − (A0e

a0z)′

A0ea0z
]f (k) + [(Ak−1e

ak−1z)′ +Ak−2e
ak−2z−

(A0e
a0z)′

A0ea0z
Ak−1e

ak−1z]f (k−1) +· · ·+ [(A3e
a3z)′ +A2e

a2z − (A0e
a0z)′

A0ea0z
A3e

a3z]f ′′′

+ [(A2e
a2z)′ +A1e

a1z − (A0e
a0z)′

A0ea0z
A2e

a2z]f ′′

+ [(A1e
a1z)′ +A0e

a0z − (A0e
a0z)′

A0ea0z
A1e

a1z]f ′ = 0.

We can denote the equation by the following form:

(26) f (k+1) + h1,k−1f
(k) + h1,k−2f

(k−1) + · · ·+ h1,2f
′′′ + h1,1f

′′ + h1,0f
′ = 0,

where h1,j (j = 0, 1, . . . , k − 1) is the meromorphic functions defined by the
equation (25). Substituting f ′ = g1 + z, f ′′ = g′1 + 1, f (j+1) = g

(j)
1 (2 ≤ j ≤ k)

into (26), we get

(27) g
(k)
1 + h1,k−1g

(k−1)
1 + · · ·+ h1,1g

′ + h1,0g1 = h1,
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where

h1 =− (h1,1 + zh1,0)

=−
[(
A′2 + a2A2 − A′0

A0
A2 + a0A2

)
ea2z +

(
A1 + zA′1 + za1A1

− zA1
A′0
A0

− za0A1

)
ea1z + zA0e

a0z

]
.

We claim h1 6≡ 0. Since a2, a1, a0 are different each other, if h1 ≡ 0 by
Lemma 2.1, we conclude by Lemma 2.1 that A0 ≡ 0, a contradiction. There-
fore, h1 6≡ 0. Applying Lemma 2.6 to (27) above, we obtain λ̄(g1) = λ̄(f ′−z) =
τ̄(f ′) = σ(g1) = σ(f) = ∞.

Now we prove that τ̄(f ′′) = λ̄(f ′′ − z) = ∞. Set g2(z) = f ′′ − z. Using the
same argument as above, we need to prove only that λ̄(g2) = ∞.

We differentiate both sides of (26), and obtain

(28)
f (k+2) + h1,k−1f

(k+1) + [h′1,k−1 + h1,k−2]f (k) + · · ·+ [h′1,1 + h1,0]f ′′ + h1,0′f
′ = 0.

By (26) and (28), we have
(29)

f (k+2) +
[
h1,k−1 −

h′1,0

h1,0

]
f (k+1) +

[
h′1,k−1 + h1,k−2 −

h′1,0

h1,0
h1,k−1

]
f (k) + · · ·

+
[
h′1,2 + h1,1 −

h′1,0

h1,0
h1,2

]
f ′′′ +

[
h′1,1 + h1,0 −

h′1,0

h1,0
h1,1

]
f ′′ = 0.

We can write (28) to the following form

(30) f (k+2) + h2,k−1f
(k+1) + h2,k−2f

(k) + · · ·+ h2,1f
′′′ + h2,0f

′′ = 0,

where h2,j are meromorphic functions with σ(h2,j) < 1 (j = 0, 1, . . . , k − 1),
and

(31)
h2,1 = h′1,2 + h1,1 −

h′1,0

h1,0
h1,2,

h2,0 = h′1,1 + h1,0 −
h′1,0

h1,0
h1,1,

where

(32)

h1,2 = (A3e
a1z)′ +A2e

a0z − (A0e
a0z)′

A0ea0z
A3e

a3z,

h1,1 = (A2e
a1z)′ +A1e

a0z − (A0e
a0z)′

A0ea0z
A2e

a2z,

h1,0 = (A1e
a1z)′ +A0e

a0z − (A0e
a0z)′

A0ea0z
A1e

a1z.
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Substituting f ′′ = g2 + z, f ′′′ = g′2 + 1, f (j+2) = g
(j)
2 (2 ≤ j ≤ k) into (30),

we get

(33) g
(k)
2 + h2,k−1g

(k−1)
2 + · · ·+ h2,1g

′
2 + h2,0g2 = −(h2,1 + zh2,0).

We claim h2,1 + zh2,0 6≡ 0. By (31), (32) we know h2,1 + zh2,0 can write into
the following form

h2 = −[h2,1 + zh2,0] =
−1
h1,0


zA2

0e
2a0z +

∑

γ∈Λ2

Dγe
γz


 ,

where Dγ are meromorphic functions with the order less than 1 which are
different in different places. The index set Λ2 denotes the sums of ai, aj (0 ≤
i, j ≤ 3), except for 2a0. Obviously, the differences of every sum are not the
constant which satisfies the condition (ii) and (iii) in Lemma 2.1. Similarly
with the above, if h2,1 +zh2,0 ≡ 0, by Lemma 2.1, there must be A0 ≡ 0, it is a
contradiction. Then applying Lemma 2.6 to (33), we have λ̄(g2) = λ̄(f ′′− z) =
τ̄(f ′′) = ∞.

This proves the theorem. ¤
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