GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

Jun-Feng Xu and Hong-Xun Yi

Abstract

In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives. Because of the restriction of differential equations, we obtain that the properties of fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives are more interesting than that of general transcendental meromorphic functions. Our results extend the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental results and the standard notation of the Nevanlinna value distribution theory of meromorphic functions (see [13, 21]). The term "meromorphic function" will mean meromorphic in the whole complex plane \mathbb{C}. In addition, we will use notations $\sigma(f)$ to denote the order of growth of a meromorphic function $f(z), \lambda(f)$ to denote the exponents of convergence of the zero-sequence of a meromorphic function $f(z), \bar{\lambda}(f)$ to denote the exponents of convergence of the sequence of distinct zeros of $f(z)$.

In order to give some estimates of fixed points, we recall the following definitions (see $[3,16]$).

Definition 1.1. Let $z_{1}, z_{2}, \ldots,\left(\left|z_{j}\right|=r_{j}, 0 \leq r_{1} \leq r_{2} \leq \cdots\right)$ be the sequence of distinct fixed points of transcendental meromorphic function f. Then $\bar{\tau}(f)$, the exponent of convergence of the sequence of distinct fixed points of f, is

Received September 26, 2007.

2000 Mathematics Subject Classification. Primary 34M10, 30D35.
Key words and phrases. linear differential equation, meromorphic function, fixed point. This work was supported by NSF of China(No.10771121), NSFC-RFBR and SRFDP (No.20060422049).
defined by

$$
\bar{\tau}(f)=\inf \left\{\tau>\left.0\left|\sum_{j=1}^{\infty}\right| z_{j}\right|^{-\tau}<+\infty\right\}
$$

It is evident that $\bar{\tau}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log \bar{N}\left(r, \frac{1}{f-z}\right)}{\log r}$ and $\bar{\tau}(f)=\bar{\lambda}(f-z)$.
For the second order linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0 \tag{1}
\end{equation*}
$$

where $B(z)$ is an entire function of finite order, it is well known that each solution f of (1) is an entire function. If f_{1} and f_{2} are any two linearly independent solutions of (1), then at least one of f_{1}, f_{2} must have infinite order ([14]). Hence, "most" solutions of (1) will have infinite order.

Thus a natural question is: what condition on $B(z)$ will guarantee that every solution $f \not \equiv 0$ of (1) will have infinite order? Frei, Ozawa, Amemiya and Langley, and Gundersen studied the question. For the case that $B(z)$ is a transcendental entire function, Gundersen [10] proved that if $\rho(B) \neq 1$, then for every solution $f \not \equiv 0$ of (1) has infinite order.

For the above question, there are many results for second order linear differential equations (see for example [1, 2, 7, 8, 12, 17]). In 2002, Chen considered the problem and obtained the following result in [2].

Theorem A. Let a, b be nonzero complex numbers and $a \neq b, Q(z) \not \equiv 0$ be a nonconstant polynomial or $Q(z)=h(z) e^{b z}$, where $h(z)$ is a nonzero polynomial. Then every solution $f \not \equiv 0$ of the equation

$$
f^{\prime \prime}+e^{b z} f^{\prime}+Q(z) f=0
$$

has infinite order.
In 2005, Chen [5] investigated the more general equation with meromorphic coefficients, and obtained the following result.

Theorem B. Let $A_{j}(z)(\equiv \equiv 0)(j=0,1)$ be meromorphic functions with $\sigma\left(A_{j}\right)<$ 1 , a, b be nonzero complex numbers and $\arg a \neq \arg b$ or $a=c b(0<c<1)$. Then every solution $f \not \equiv 0$ of the equation

$$
\begin{equation*}
f^{\prime \prime}+A_{1}(z) e^{a z} f^{\prime}+A_{0}(z) e^{b z} f=0 \tag{2}
\end{equation*}
$$

has infinite order.
In this paper, we continue the research in the direction and obtain the following result which greatly extends the previous results of M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

Theorem 1.1. Suppose that $A_{j} \not \equiv 0(j=0,1, \ldots, k-1)$ be meromorphic functions with $\sigma\left(A_{j}\right)<1(j=0,1, \ldots, k-1)$. Let $a_{0}, a_{1}, \ldots, a_{k-1}$ be nonzero complex constants such that for (i) $\arg a_{j}=\arg a_{0}$ and $a_{j}=c_{j} a_{0}\left(0<c_{j}<1\right)$
or (ii) $\arg a_{j} \neq \arg a_{0}(j=0,1, \ldots, k-1)$. Then for $k \geq 2$, every transcendental meromorphic solution $f(\not \equiv 0)$ of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} e^{a_{k-1} z} f^{(k-1)}+\cdots+A_{1} e^{a_{1} z} f^{\prime}+A_{0} e^{a_{0} z} f=0 . \tag{3}
\end{equation*}
$$

have infinite order.
Remark 1.2. In (i), if $c_{j}=c(0<c<1)$, then (i) becomes $a_{j}=c a_{0} \bmod 2 \pi$, $j=1,2, \ldots, k-1$. Obviously, Theorem 1.1 generalizes Theorem B to the high order differential equation and ([6]), Theorem 1.5 from the entire coefficients to meromorphic ones.

Since the beginning of the last four decades, a substantial number of research articles have been written to describe the fixed points of general transcendental meromorphic functions (see [23]). However, there are few studies on the fixed points of solutions of the general differential equation. In [3], Z. X. Chen first studied the problems on the fixed points of solutions of second order linear differential equations with entire coefficients. Since then, Wang and Yi [20, 19], Laine and J. Rieppo [16], Chen and Shon [5] studied the problems on the fixed points of solutions of second order linear differential equations with meromorphic coefficients and their derivatives. The other main purpose of this paper is to extend some results in [5] to the case of higher order linear differential equations with meromorphic coefficients.

Theorem C. Let $A_{j}(z), a, b, c$ satisfy the additional hypotheses of Theorem 1.1. If $f \not \equiv 0$ is any meromorphic solution of the equation (2), then $f, f^{\prime}, f^{\prime \prime}$ all have infinitely fixed points and satisfy

$$
\bar{\tau}(f)=\bar{\tau}\left(f^{\prime}\right)=\bar{\tau}\left(f^{\prime \prime}\right)=\infty .
$$

Remark 1.3. In the proof of Theorem C, the authors gave an important lemma, see [5], Lemma 7, to prove the conclusion. However it seems too complicated to deal with the high differential equations. In this paper, we use the Lemma 2.1 in Section 2 to solve the difficulty easily.

Theorem 1.4. Let $A_{j}(z), a_{j}, c_{j}$ satisfy the additional hypotheses of Theorem 1.1. If $f \not \equiv 0$ is any meromorphic solution of the equation (3), then $f, f^{\prime}, f^{\prime \prime}$ all have infinitely fixed points and satisfy

$$
\bar{\tau}(f)=\bar{\tau}\left(f^{\prime}\right)=\bar{\tau}\left(f^{\prime \prime}\right)=\infty .
$$

2. Lemmas

The linear measure of a set $E \subset[0,+\infty)$ is defined as $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$. The logarithmic measure of a set $E \subset[1,+\infty)$ is defined by

$$
\operatorname{lm}(E)=\int_{1}^{+\infty} \chi_{E}(t) / t d t
$$

where $\chi_{E}(t)$ is the characteristic function of E. The upper and lower densities of E are

$$
\overline{\mathrm{dens}} E=\limsup _{r \rightarrow+\infty} \frac{m(E \cap[0, r])}{r}, \quad \underline{\text { dens }} E=\liminf _{r \rightarrow+\infty} \frac{m(E \cap[0, r])}{r} .
$$

The following lemma, due to Gross [9], is important in the factorization and uniqueness theory of meromorphic functions, playing an important role in this paper as well.

Lemma 2.1 ($[9,22])$. Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$.
(ii) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leq j<k \leq n$.
(iii) For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-g_{k}}\right)\right\}(r \rightarrow \infty, r \notin$ $E)$.
Then $f_{j}(z) \equiv 0(j=1,2, \ldots, n)$.
Lemma 2.2 ([11]). Let f be a transcendental meromorphic function of finite order σ. Let $\varepsilon>0$ be a constant, and k and j be integers satisfying $k>j \geq 0$. Then the following two statements hold:
(a) There exists a set $E_{1} \subset(1, \infty)$ which has finite logarithmic measure, such that for all z satisfying $|z| \notin E_{1} \bigcup[0,1]$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{4}
\end{equation*}
$$

(b) There exists a set $E_{2} \subset[0,2 \pi)$ which has linear measure zero, such that if $\theta \in[0,2 \pi)-E_{2}$, then there is a constant $R=R(\theta)>0$ such that (4) holds for all z satisfying $\arg z=\theta$ and $R \leq|z|$.

Lemma 2.3. Let $f(z)=g(z) / d(z)$, where $g(z)$ is transcendental entire, and let $d(z)$ be the canonical product (or polynomial) formed with the non-zero poles of $f(z)$. Then we have

$$
f^{(n)}=\frac{1}{d}\left[g^{(i)}+B_{i, i-1} g^{(k-1)}+\cdots+B_{i, 1} g^{\prime}+B_{i, 0} g\right]
$$

where $B_{i, j}$ are defined as a sum of a finite number of terms of the type

$$
\sum_{\left(j_{1} \cdots j_{i}\right)} C_{j j_{1} \cdots j_{i}}\left(\frac{d^{\prime}}{d}\right)^{j_{1}} \cdots\left(\frac{d^{(i)}}{d}\right)^{j_{i}}
$$

$C_{j j_{1} \cdots j_{i}}$ are constants, and $j+j_{1}+2 j_{2}+\cdots+i j_{i}=n$.
Using mathematical induction, we can easily prove the lemma.

Lemma 2.4 ([2]). Let $g(z)$ be a meormorphic function with $\sigma(g)=\beta<\infty$. Then for any given $\varepsilon>0$, there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi \in[0,2 \pi) \backslash E$, then there is a constant $R=R(\psi)>1$ such that, for all z satisfying $\arg z=\psi$ and $|z|=r>R$, we have

$$
\exp \left\{-r^{\beta+\varepsilon}\right\} \leq|g(z)| \leq \exp \left\{r^{\beta+\varepsilon}\right\}
$$

Lemma $2.5([18])$. Consider $g(z)=A(z) e^{a z}$, where $A(z)(\not \equiv 0)$ is a meromorphic function with $\sigma(A)=\alpha<1$, a is a complex constant, $a=|a| e^{i \varphi}(\varphi \in$ $[0,2 \pi))$. Set $E_{0}=\{\theta \in[0,2 \pi): \cos (\varphi+\theta)=0\}$, then E_{0} is a finite set. Then for any given $\varepsilon(0<\varepsilon<1-\alpha)$, there is a set $E_{1} \in[0,2 \pi)$ that has linear measure zero, if $z=r e^{i \theta}, \theta \backslash\left(E_{0} \bigcup E_{1}\right)$, then we have when r is sufficiently large:
(i) If $\cos (\varphi+\theta)>0$, then

$$
\exp \{(1-\varepsilon) r \delta(a z, \theta))\} \leq|g(z)| \leq \exp \{(1+\varepsilon) r \delta(a z, \theta))\}
$$

(ii) If $\cos (\varphi+\theta)<0$, then

$$
\exp \{(1+\varepsilon) r \delta(a z, \theta))\} \leq|g(z)| \leq \exp \{(1-\varepsilon) r \delta(a z, \theta))\}
$$

where $\delta(a z, \theta)=|a| \cos (\varphi+\theta)$.
Lemma 2.6 ([4]). Let $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ are finite order meromorphic function. If $f(z)$ is an infinite order meromorphic solution of the equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=F
$$

then f satisfies $\lambda(f)=\bar{\lambda}(f)=\sigma(f)=\infty$.

3. Proof of Theorem 1.1

First of all we prove that the equation (3) can't have a meromorphic solution $f \not \equiv 0$ with $\sigma(f)<1$. Assume a meromorphic function $f \not \equiv 0$ with $\sigma(f)=$ $\sigma_{1}<1$ satisfies the equation (3). Then $\sigma\left(f^{(j)}\right)=\sigma_{1}<1(j=1,2, \ldots, k-$ 1). By Lemma 2.4, for any given $\varepsilon_{1}\left(0<3 \varepsilon_{1}<\min \left\{1-\sigma_{1}, \frac{1-c}{2}\right\}\right), c=$ $\max _{1 \leq j \leq k-1}\left\{c_{j}\right\}$, there is a set $E_{1} \in[0,2 \pi)$ that has linear measure zero, such that if $\theta \in[0,2 \pi) \backslash E_{1}$, then there is a constant $R>1$, such that for all $\arg z=\theta$ and $|z|=r>R$, we have

$$
\begin{equation*}
\left|f^{(j)}\right| \leq \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\} . \tag{5}
\end{equation*}
$$

If $\arg a_{j} \neq \arg a_{0}(j=1,2, \ldots, k-1)$, then from Lemma 2.5 and $\sigma\left(A_{j} f^{(j)}\right)<$ $1(j=0,1, \ldots, k-1)$, we know that for the above ε_{1}, there is a ray $\arg z=$ $\theta_{0} \in[0,2 \pi) \backslash\left(E_{1} \bigcup E_{2} \bigcup E_{0}\right)$, where $E_{2} \in[0,2 \pi)$ that has linear measure zero,

$$
E_{0}=\left\{\theta \in[0,2 \pi): \delta\left(a_{j} z, \theta\right)=0(j \neq 0) \text { or } \delta\left(a_{0} z, \theta\right)=0\right\},
$$

where $\delta\left(a_{j} z, \theta\right)=\left|a_{j}\right| \cos \left(\arg a_{j}+\theta_{0}\right)(j \neq 0), \delta\left(a_{0} z, \theta\right)=\left|a_{0}\right| \cos \left(\arg a_{0}+\theta_{0}\right)$, such that $\operatorname{Re}\left\{a_{j} z\right\}=\delta\left(a_{j} z, \theta_{0}\right) r<0, \operatorname{Re}\left\{a_{0} z\right\}=\delta\left(a_{0} z, \theta_{0}\right) r>0$. For a sufficiently large r, combining with (5) we have

$$
\begin{equation*}
\left|A_{0}\left(r e^{i \theta_{0}}\right) e^{a_{0} r e^{i \theta_{0}}} f\left(r e^{i \theta_{0}}\right)\right| \geq \exp \left\{\left(1-\varepsilon_{1}\right) \delta\left(a_{j} z, \theta_{0}\right) r\right\} \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (7) }\left|f^{(k)}\left(r e^{i \theta_{0}}\right)+A_{k-1}\left(r e^{i \theta_{0}}\right) e^{a_{k-1} r e^{i \theta_{0}}} f^{(k-1)}\left(r e^{i \theta_{0}}\right)+\cdots+A_{1}\left(r_{1} e^{i \theta_{0}}\right) e^{a_{1} r e^{i \theta_{0}}} f^{\prime}\left(r e^{i \theta_{0}}\right)\right| \\
& \leq \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\}+\sum_{j=1}^{k-1} \exp \left\{\left(1-\varepsilon_{1}\right) \delta\left(a_{j} z, \theta_{0}\right) r\right\} \\
& \leq \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\}+1
\end{aligned}
$$

By (3), (6), and (7), we have

$$
\exp \left\{\left(1-\varepsilon_{1}\right) \delta\left(a_{j} z, \theta_{0}\right) r\right\} \leq \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\}+1
$$

This is absurd by $\sigma_{1}+\varepsilon_{1}<1$.
If $\arg a_{j}=\arg a_{0}$, and $a_{j}=c_{j} a_{0}\left(0<c_{j}<1\right)$, then $\delta\left(a_{j} z, \theta\right)=c_{j} \delta\left(a_{0} z, \theta\right)$ for $z=r e^{i \theta}$. Using the same reasoning as above, we know that there is a ray $\arg z=\theta_{0} \in[0,2 \pi) \backslash\left(E_{1} \bigcup E_{2} \bigcup E_{0}\right)$ satisfying $\delta\left(a_{j} z, \theta_{0}\right)=c_{j} \delta\left(a_{0} z, \theta_{0}\right)>0$, and for the above ε_{1} and a sufficiently large r, we have

$$
\begin{align*}
\exp \left\{\left(1-\varepsilon_{1}\right) \delta\left(a_{j} z, \theta_{0}\right) r\right\} \leq & \left|A_{0}\left(r e^{i \theta_{0}}\right) e^{a_{0} r e^{i \theta_{0}}} f\left(r_{0} e^{i \theta_{0}}\right)\right| \tag{8}\\
\leq & \mid f^{(k)}+A_{k-1}\left(r e^{i \theta_{0}}\right) e^{a_{k-1} r e^{i \theta_{0}}} f^{(k-1)}\left(r e^{i \theta_{0}}\right)+\cdots \\
& +A_{1}\left(r e^{i \theta_{0}}\right) e^{a_{1} r e^{i \theta_{0}}} f^{\prime}\left(r e^{i \theta_{0}}\right) \mid \\
\leq & \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\}+\exp \left\{\left(1-\varepsilon_{1}\right) c_{j} \delta\left(a_{j} z, \theta_{0}\right) r\right\} \\
\leq & \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\} \exp \left\{\left(1-\varepsilon_{1}\right) c_{j} \delta\left(a_{j} z, \theta_{0}\right) r\right\} .
\end{align*}
$$

By (8), we can get

$$
\exp \left\{\frac{1-c}{2} \delta\left(a_{j} z, \theta_{0}\right) r\right\} \leq \exp \left\{r^{\sigma_{1}+\varepsilon_{1}}\right\}
$$

This is a contradiction. Hence $\sigma(f) \geq 1$.
Now assume f is a meromorphic function of the equation (3) with $1 \leq \sigma(f)=$ $\sigma<\infty$. From the equation (3), we know that the poles of $f(z)$ can occur only at the poles of $A_{j}(j=0,1, \ldots, k-1)$. Let $f=g / d, d$ be the canonical product formed with the nonzero poles of $f(z)$, with $\sigma(d)=\beta \leq \alpha=\max \left\{\sigma\left(A_{j}\right): j=\right.$ $0,1, \ldots, k-1\}<1, g$ be an entire function and $1 \leq \sigma(g)=\sigma(f)=\sigma<\infty$. Substituting $f=g / d$ into (3), by Lemma 2.3 we can get

$$
\begin{align*}
& g^{(k)}+g^{(k-1)}\left[A_{k-1} e^{a_{k-1} z}+B_{k, k-1}\right]+\cdots+g^{\prime}\left[A_{1} e^{a_{1} z}+\sum_{i=2}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 1}\right] \tag{9}\\
& +g\left[A_{0} e^{a_{0} z}+\sum_{i=1}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 0}\right]=0 .
\end{align*}
$$

By Lemma 2.2, for any given $\varepsilon\left(0<3 \varepsilon<\min \left\{1-\alpha, \frac{1-c}{6}\right\}, c=\max \left\{c_{j}, 1 \leq\right.\right.$ $j \leq k-1\}$), there exists a set $E \in[0,2 \pi)$ that has linear measure zero, such
that if $\theta \in[0,2 \pi) \backslash E$, then there is a constant $R_{0}=R_{0}(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z| \geq R_{0}$, we have

$$
\begin{equation*}
\frac{g^{(j)}(z)}{g(z)} \leq|z|^{k(\sigma-1+\varepsilon)}, \quad(j=1,2, \ldots, k) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{(j)}(z)}{d(z)} \leq|z|^{k(\beta-1+\varepsilon)}, \quad(j=1,2, \ldots, k) \tag{11}
\end{equation*}
$$

Setting $z=r e^{i \theta}$, then

$$
\begin{equation*}
\operatorname{Re}\left\{a_{j} z\right\}=\delta\left(a_{j} z, \theta\right) r, \quad \operatorname{Re}\left\{a_{0} z\right\}=\delta\left(a_{0} z, \theta\right) r . \tag{12}
\end{equation*}
$$

Now suppose that $\arg a_{j} \neq \arg a_{0}(j=1,2, \ldots, k-1)$. In view of Lemma 2.5 and (12), it is easy to see for the above ε there is a ray $\arg z=\theta$ such that $\theta \in[0,2 \pi) \backslash\left(E_{1} \bigcup E_{2} \bigcup E_{0}\right)$ (where E_{2} and E_{0} are defined as in Lemma 2.5, $E_{1} \bigcup E_{2} \bigcup E_{0}$ is of linear measure zero) satisfying $\delta\left(a_{j} z, \theta\right)<0, c_{j} \delta\left(a_{0} z, \theta\right)>0$, and for a sufficiently large r, we have

$$
\begin{equation*}
\left|A_{0}\left(r e^{i \theta}\right) e^{a_{0} r e^{i \theta}} f\left(r e^{i \theta}\right)\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{0} z, \theta\right) r\right\} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\left|A_{j}\left(r e^{i \theta}\right) e^{a_{j} r e^{i \theta}}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{j} z, \theta\right) r\right\}(j=1, \ldots, k-1) \tag{14}
\end{equation*}
$$

By (11), (13), and (14), we have

$$
\begin{equation*}
\left|A_{k-1} e^{a_{k-1} z}+B_{k, k-1}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{j} z, \theta\right) r\right\}+M r^{k(\beta-1+\varepsilon)}, \ldots \tag{15}
\end{equation*}
$$

(16) $\left|A_{1} e^{a_{1} z}+\sum_{i=2}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 1}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{j} z, \theta\right) r\right\}+M r^{k(\beta-1+\varepsilon)}$,
and

$$
\begin{equation*}
\left|A_{0} e^{a_{0} z}+\sum_{i=1}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 0}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{0} z, \theta\right) r\right\}(1-o(1)) \tag{17}
\end{equation*}
$$

where $M>0$ is a constant, it can be different in different occurrences.
By (9), (10), and (15)-(17), we have

$$
\begin{aligned}
& \exp \left\{(1-\varepsilon) \delta\left(a_{0} z, \theta\right) r\right\}(1-o(1)) \\
\leq & \left|A_{0} e^{a_{0} z}+\sum_{i=1}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 0}\right| \\
\leq & \left|\frac{g^{(k)}(z)}{g(z)}\right|+\left|\frac{g^{(k-1)}(z)}{g(z)}\left(A_{k-1} e^{a_{k-1} z}+B_{k, k-1}\right)\right|+\cdots \\
& +\left|\frac{g^{\prime}(z)}{g(z)}\left(A_{1} e^{a_{1} z}+\sum_{i=2}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 1}\right)\right| \\
\leq & r^{k(\sigma-1+\varepsilon)}+r^{(k-1)(\sigma-1+\varepsilon)}\left[\exp \left\{(1-\varepsilon) \delta\left(a_{j} z, \theta\right) r_{j}\right\}+M r^{k(\beta-1+\varepsilon)}\right]+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& +r^{(\sigma-1+\varepsilon)}\left[\exp \left\{(1-\varepsilon) \delta\left(a_{j} z, \theta\right) r_{j}\right\}+M r^{k(\beta-1+\varepsilon)}\right] \\
\leq & r^{M}
\end{aligned}
$$

This is absurd which implies $\sigma(g)=\infty$, i.e., $\sigma(f)=\infty$.

Now suppose that $\arg a_{j}=\arg a_{0}$, and $a_{j}=c_{j} a_{0}\left(0<c_{j}<1\right)$; then $\delta\left(a_{j} z, \theta\right)=c_{j} \delta\left(a_{0} z, \theta\right), \operatorname{Re}\left\{a_{j} z\right\}=c_{j} \operatorname{Re}\left\{a_{0} z\right\}$. Using the same argument as above, we know that (10), (11) hold. Moreover, there is a ray $\arg z=\theta$ satisfying $\delta\left(a_{j} z, \theta\right)=c_{j} \delta\left(a_{0} z, \theta\right)>0$, then for a sufficiently large r, we have (13) and

$$
\begin{equation*}
\left|A_{j}\left(r e^{i \theta}\right) e^{a_{j} r e^{i \theta}}\right| \leq \exp \left\{(1+\varepsilon) c_{j} \delta r\left(a_{0} z, \theta\right)\right\}(j=1, \ldots, k-1) \tag{18}
\end{equation*}
$$

By (11), (13), and (18), we have

$$
\begin{gather*}
\left|A_{k-1} e^{a_{k-1} z}+B_{k, k-1}\right| \leq \exp \left\{(1+\varepsilon) c_{j} \delta\left(a_{0} z, \theta\right) r\right\}, \ldots, \tag{19}\\
\left|A_{1} e^{a_{1} z}+\sum_{i=2}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 1}\right| \leq \exp \left\{(1+\varepsilon) c_{j} \delta\left(a_{0} z, \theta\right) r\right\},
\end{gather*}
$$

and

$$
\begin{equation*}
\left|A_{0} e^{a_{0} z}+\sum_{i=1}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 0}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{0} z, \theta\right) r\right\}(1-o(1)) \tag{21}
\end{equation*}
$$

By (9), (10), and (19)-(21), we have

$$
\begin{aligned}
& \exp \left\{(1-\varepsilon) \delta\left(a_{0} z, \theta\right) r\right\}(1-o(1)) \\
\leq & \left|A_{0} e^{a_{0} z}+\sum_{i=1}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 0}\right| \\
\leq & \left|\frac{g^{(k)}(z)}{g(z)}\right|+\left|\frac{g^{(k-1)}(z)}{g(z)}\left(A_{k-1} e^{a_{k-1} z}+B_{k, k-1}\right)\right|+\cdots \\
& +\left|\frac{g^{\prime}(z)}{g(z)}\left(A_{1} e^{a_{1} z}+\sum_{i=2}^{k-1} A_{i} e^{a_{i} z} B_{i, 1}+B_{k, 1}\right)\right| \\
\leq & r^{k(\sigma-1+\varepsilon)}+r^{(k-1)(\sigma-1+\varepsilon)} \exp \left\{(1+\varepsilon) c_{j} \delta\left(a_{0} z, \theta\right) r\right\}(1+o(1))+\cdots \\
& +r^{(\sigma-1+\varepsilon)} \exp \left\{(1+\varepsilon) c_{j} \delta\left(a_{0} z, \theta\right) r\right\}(1+o(1)) \\
\leq & M r^{k(\sigma-1+\varepsilon)} \exp \left\{(1+\varepsilon) c_{j} \delta\left(a_{0} z, \theta\right) r\right\}(1+o(1)) .
\end{aligned}
$$

From this and $3 \varepsilon<\frac{1-c}{6}$, we get

$$
\exp \left\{\frac{1-c}{2} r \delta\left(a_{0} z, \theta\right)\right\} \leq M r^{k(\sigma-1+\varepsilon)} .
$$

It is a contradiction. The proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.4

Assume $f(\not \equiv 0)$ is a meromorphic function of (3); then $\sigma(f)=\infty$ by Theorem 1.1. Set $g_{0}(z)=f(z)-z$, then z is a fixed point of $f(z)$ if and only if $g_{0}(z)=0 . g_{0}(z)$ is a meromorphic function and $\sigma\left(g_{0}\right)=\sigma(f)=\infty$. Substituting $f=g_{0}+z$ into (3), we have
(22) $g_{0}^{(k)}+A_{k-1} e^{a_{k-1} z} g_{0}^{(k-1)}+\cdots+A_{1} e^{a_{1} z} g_{0}^{\prime}+A_{0} e^{a_{0} z} g_{0}=-A_{1} e^{a_{1} z}-z A_{0} e^{a_{0} z}$.

We can rewrite (22) as the following form:

$$
g_{0}^{(k)}+h_{0, k-1} g_{0}^{(k-1)}+\cdots+h_{0,1} g_{0}^{\prime}+h_{0,0} g_{0}=-h_{0,1}-z h_{0,0}
$$

Obviously, $h_{0}=-\left[h_{1,0}+z h_{0,0}\right]=-A_{1} e^{a_{1} z}-z A_{0} e^{a_{0} z} \not \equiv 0$. Here we just consider the meromorphic solutions of infinite order satisfying $g_{0}=f-z$, by Lemma 2.6 we know that $\bar{\lambda}\left(g_{0}\right)=\bar{\tau}(f)=\infty$ holds.

Now we consider the fixed points of $f^{\prime}(z)$.
Let $g_{1}(z)=f^{\prime}-z$. Then z is a fixed point of $f^{\prime}(z)$ if and only if $g_{1}(z)=0$. $g_{1}(z)$ is a meromorphic function and $\sigma\left(g_{1}\right)=\sigma\left(f^{\prime}\right)=\sigma(f)=\infty$. Differentiating both sides of the equation (3), we have

$$
\begin{align*}
& f^{(k+1)}+A_{k-1} e^{a_{k-1} z} f^{(k)}+\left[\left(A_{k-1} e^{a_{k-1} z}\right)^{\prime}+A_{k-2} e^{a_{k-2} z}\right] f^{(k-1)} \\
& +\cdots+\left[\left(A_{3} e^{a_{3} z}\right)^{\prime}+A_{2} e^{a_{2} z}\right] f^{\prime \prime \prime}+\left[\left(A_{2} e^{a_{2} z}\right)^{\prime}+A_{1} e^{a_{1} z}\right] f^{\prime \prime} \tag{23}\\
& +\left[\left(A_{1} e^{a_{1} z}\right)^{\prime}+A_{0} e^{a_{0}} z\right] f^{\prime}+\left(A_{0} e^{a_{0} z}\right)^{\prime} f=0
\end{align*}
$$

By (3), we have
(24) $f=-\frac{1}{A_{0} e^{a_{0} z}}\left[f^{(k)}+A_{k-1} e^{a_{k-1} z} f^{(k-1)}+\cdots+A_{2} e^{a_{2} z} f^{\prime \prime}+A_{1} e^{a_{1} z} f^{\prime}\right]$.

Substituting (24) into (23), we have

$$
\begin{align*}
& f^{(k+1)}+\left[A_{k-1} e^{a_{k-1} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}}\right] f^{(k)}+\left[\left(A_{k-1} e^{a_{k-1} z}\right)^{\prime}+A_{k-2} e^{a_{k-2} z}-\right. \tag{25}\\
& \left.\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{k-1} e^{a_{k-1} z}\right] f^{(k-1)}+\cdots+\left[\left(A_{3} e^{a_{3} z}\right)^{\prime}+A_{2} e^{a_{2} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{3} e^{a_{3} z}\right] f^{\prime \prime \prime} \\
& +\left[\left(A_{2} e^{a_{2} z}\right)^{\prime}+A_{1} e^{a_{1} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{2} e^{a_{2} z}\right] f^{\prime \prime} \\
& +\left[\left(A_{1} e^{a_{1} z}\right)^{\prime}+A_{0} e^{a_{0} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{1} e^{a_{1} z}\right] f^{\prime}=0 .
\end{align*}
$$

We can denote the equation by the following form:
(26) $f^{(k+1)}+h_{1, k-1} f^{(k)}+h_{1, k-2} f^{(k-1)}+\cdots+h_{1,2} f^{\prime \prime \prime}+h_{1,1} f^{\prime \prime}+h_{1,0} f^{\prime}=0$,
where $h_{1, j}(j=0,1, \ldots, k-1)$ is the meromorphic functions defined by the equation (25). Substituting $f^{\prime}=g_{1}+z, f^{\prime \prime}=g_{1}^{\prime}+1, f^{(j+1)}=g_{1}^{(j)}(2 \leq j \leq k)$ into (26), we get

$$
\begin{equation*}
g_{1}^{(k)}+h_{1, k-1} g_{1}^{(k-1)}+\cdots+h_{1,1} g^{\prime}+h_{1,0} g_{1}=h_{1} \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{1}=- & \left(h_{1,1}+z h_{1,0}\right) \\
=- & {\left[\left(A_{2}^{\prime}+a_{2} A_{2}-\frac{A_{0}^{\prime}}{A_{0}} A_{2}+a_{0} A_{2}\right) e^{a_{2} z}+\left(A_{1}+z A_{1}^{\prime}+z a_{1} A_{1}\right.\right.} \\
& \left.\left.-z A_{1} \frac{A_{0}^{\prime}}{A_{0}}-z a_{0} A_{1}\right) e^{a_{1} z}+z A_{0} e^{a_{0} z}\right] .
\end{aligned}
$$

We claim $h_{1} \not \equiv 0$. Since a_{2}, a_{1}, a_{0} are different each other, if $h_{1} \equiv 0$ by Lemma 2.1, we conclude by Lemma 2.1 that $A_{0} \equiv 0$, a contradiction. Therefore, $h_{1} \not \equiv 0$. Applying Lemma 2.6 to (27) above, we obtain $\bar{\lambda}\left(g_{1}\right)=\bar{\lambda}\left(f^{\prime}-z\right)=$ $\bar{\tau}\left(f^{\prime}\right)=\sigma\left(g_{1}\right)=\sigma(f)=\infty$.

Now we prove that $\bar{\tau}\left(f^{\prime \prime}\right)=\bar{\lambda}\left(f^{\prime \prime}-z\right)=\infty$. Set $g_{2}(z)=f^{\prime \prime}-z$. Using the same argument as above, we need to prove only that $\bar{\lambda}\left(g_{2}\right)=\infty$.

We differentiate both sides of (26), and obtain

$$
\begin{equation*}
f^{(k+2)}+h_{1, k-1} f^{(k+1)}+\left[h_{1, k-1}^{\prime}+h_{1, k-2}\right] f^{(k)}+\cdots+\left[h_{1,1}^{\prime}+h_{1,0}\right] f^{\prime \prime}+h_{1,0^{\prime}} f^{\prime}=0 \tag{28}
\end{equation*}
$$

By (26) and (28), we have

$$
\begin{align*}
& f^{(k+2)}+\left[h_{1, k-1}-\frac{h_{1,0}^{\prime}}{h_{1,0}}\right] f^{(k+1)}+\left[h_{1, k-1}^{\prime}+h_{1, k-2}-\frac{h_{1,0}^{\prime}}{h_{1,0}} h_{1, k-1}\right] f^{(k)}+\cdots \tag{29}\\
& +\left[h_{1,2}^{\prime}+h_{1,1}-\frac{h_{1,0}^{\prime}}{h_{1,0}} h_{1,2}\right] f^{\prime \prime \prime}+\left[h_{1,1}^{\prime}+h_{1,0}-\frac{h_{1,0}^{\prime}}{h_{1,0}} h_{1,1}\right] f^{\prime \prime}=0
\end{align*}
$$

We can write (28) to the following form

$$
\begin{equation*}
f^{(k+2)}+h_{2, k-1} f^{(k+1)}+h_{2, k-2} f^{(k)}+\cdots+h_{2,1} f^{\prime \prime \prime}+h_{2,0} f^{\prime \prime}=0, \tag{30}
\end{equation*}
$$

where $h_{2, j}$ are meromorphic functions with $\sigma\left(h_{2, j}\right)<1(j=0,1, \ldots, k-1)$, and

$$
\begin{align*}
& h_{2,1}=h_{1,2}^{\prime}+h_{1,1}-\frac{h_{1,0}^{\prime}}{h_{1,0}} h_{1,2} \\
& h_{2,0}=h_{1,1}^{\prime}+h_{1,0}-\frac{h_{1,0}^{\prime}}{h_{1,0}} h_{1,1} \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
& h_{1,2}=\left(A_{3} e^{a_{1} z}\right)^{\prime}+A_{2} e^{a_{0} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{3} e^{a_{3} z}, \\
& h_{1,1}=\left(A_{2} e^{a_{1} z}\right)^{\prime}+A_{1} e^{a_{0} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{2} e^{a_{2} z}, \tag{32}\\
& h_{1,0}=\left(A_{1} e^{a_{1} z}\right)^{\prime}+A_{0} e^{a_{0} z}-\frac{\left(A_{0} e^{a_{0} z}\right)^{\prime}}{A_{0} e^{a_{0} z}} A_{1} e^{a_{1} z} .
\end{align*}
$$

Substituting $f^{\prime \prime}=g_{2}+z, f^{\prime \prime \prime}=g_{2}^{\prime}+1, f^{(j+2)}=g_{2}^{(j)}(2 \leq j \leq k)$ into (30), we get

$$
\begin{equation*}
g_{2}^{(k)}+h_{2, k-1} g_{2}^{(k-1)}+\cdots+h_{2,1} g_{2}^{\prime}+h_{2,0} g_{2}=-\left(h_{2,1}+z h_{2,0}\right) \tag{33}
\end{equation*}
$$

We claim $h_{2,1}+z h_{2,0} \not \equiv 0$. By (31), (32) we know $h_{2,1}+z h_{2,0}$ can write into the following form

$$
h_{2}=-\left[h_{2,1}+z h_{2,0}\right]=\frac{-1}{h_{1,0}}\left[z A_{0}^{2} e^{2 a_{0} z}+\sum_{\gamma \in \Lambda_{2}} D_{\gamma} e^{\gamma z}\right],
$$

where D_{γ} are meromorphic functions with the order less than 1 which are different in different places. The index set Λ_{2} denotes the sums of $a_{i}, a_{j}(0 \leq$ $i, j \leq 3$), except for $2 a_{0}$. Obviously, the differences of every sum are not the constant which satisfies the condition (ii) and (iii) in Lemma 2.1. Similarly with the above, if $h_{2,1}+z h_{2,0} \equiv 0$, by Lemma 2.1, there must be $A_{0} \equiv 0$, it is a contradiction. Then applying Lemma 2.6 to (33), we have $\bar{\lambda}\left(g_{2}\right)=\bar{\lambda}\left(f^{\prime \prime}-z\right)=$ $\bar{\tau}\left(f^{\prime \prime}\right)=\infty$.

This proves the theorem.

References

[1] I. Amemiya and M. Ozawa, Nonexistence of finite order solutions of $w^{\prime \prime}+e^{-z} w^{\prime}+$ $Q(z) w=0$, Hokkaido Math. J. 10 (1981), Special Issue, 1-17.
[2] Z. X. Chen, The growth of solutions of differential equation $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$, Science in China (series A). 31(2001), no.9, 775-784.
[3] _, The fixed points and hyper order of solutions of second order complex differential equations, Acta Math. Sci. Ser. A Chin. Ed. 20 (2000), no. 3, 425-432.
[4] , Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14 (1994), no. 4, 425-438.
[5] Z. X. Chen and K. H. Shon, On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 753-764.
[6] _, The growth of solutions of higher order differential equations, Southeast Asian Bull. Math. 27 (2004), no. 6, 995-1004.
[7] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999), no. 2, 273-285.
[8] M. Frei, Über die subnormalen Lösungen der Differentialgleichung $w^{\prime \prime}+e^{-z} w^{\prime}+$ konst. $w=0$, Comment. Math. Helv. 36 (1961), 1-8.
[9] F. Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968), 199-214.
[10] G. Gundersen, On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17.
[11] , Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) $\mathbf{3 7}$ (1988), no. 1, 88-104.
[12] , Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[13] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[14] E. Hille, Ordinary Differential Equations in the Complex Domain, Pure and Applied Mathematics. Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1976.
[15] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993.
[16] I. Laine and J. Rieppo, Differential polynomials generated by linear differential equations, Complex Var. Theory Appl. 49 (2004), no. 12, 897-911.
[17] J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430-439.
[18] A. I. Markushevich, Theory of Functions of a Complex Variable, Prentice-Hall, New Jersey, 1965.
[19] J. Wang, Oscillation results for solutions of differential equations and their application, Doctoral Thesis, Shandong University, 2003.
[20] J. Wang and H. X. Yi, Fixed points and hyper order of differential polynomials generated by solutions of differential equation, Complex Var. Theory Appl. 48 (2003), no. 1, 83-94.
[21] L. Yang, Value Distribution Theory, Springer, Berlin, Heidelberg, New York, 1993.
[22] H. X. Yi and C. C. Yang, The Uniqueness Theory of Meromorphic Functions, Science Press/Kluwer Academic Publishers, Beijing/New York, 2003.
[23] Q.T. Zhuang and C. C. Yang, The Fixed Points and Factorization Theory of Meromorphic Functions, Press in Beijing University, Beijing, 1988.

Jun-Feng Xu
Department of Mathematics
Wuyi University
Jiangmen, Guangdong 529020, P. R. China
E-mail address: xujunf@gmail.com
Hong-Xun Yi
Department of Mathematics
Shandong University
Jinan, Shandong 250100, P. R. China
E-mail address: hxyi@sdu.edu.cn

