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DOMINATION IN GRAPHS OF MINIMUM DEGREE FOUR

Moo Young Sohn and Yuan Xudong

Abstract. A dominating set for a graph G is a set D of vertices of G
such that every vertex of G not in D is adjacent to a vertex of D. Reed
[11] considered the domination problem for graphs with minimum degree
at least three. He showed that any graph G of minimum degree at least
three contains a dominating set D of size at most 3

8
|V (G)| by introducing

a covering by vertex disjoint paths. In this paper, by using this technique,
we show that every graph on n vertices of minimum degree at least four
contains a dominating set D of size at most 4

11
|V (G)|.

1. Introduction

Throughout this paper, by a graph G we always mean a finite, undirected,
and simple graph with vertex set V (G) and edge set E(G). For x, y ∈ V (G),
xy denotes the edge with ends x and y. If xy ∈ E(G), we say that y is a
neighbor of x or y is joined to x, and denote by N(x) the set of neighbors of x.
d(x) = |N(x)| is called the degree of x. A subgraph H is said to be induced by
U if V (H) = U and xy ∈ E(H) if and only if xy ∈ E(G), x, y ∈ U . A set D of
vertices of a graph G is called a dominating set if every vertex of V (G)−D is
adjacent to at least one element of D. The domination number of G, denoted
by γ(G), is the minimum cardinality of a dominating set of G. It has been
proved [5] that the decision problem corresponding to the domination number
for arbitrary graphs is NP -complete. Thus, the exploration of lower and upper
bounds for the domination number as sharp as possible is of great significance.
Many results on upper bounds on the domination number in terms of some
basic parameters such as the numbers of vertices and edges, the minimum
and maximum degree and so on, have been obtained. The terminologies not
presented here can be found in [6].

Let δ = δ(G) denote the minimum degree of graph G. An early result of
Ore (see [9]) states that γ(G) ≤ n

2 if G is a graph of order n with the minimum
degree at least one. This result was improved to γ(G) ≤ 2n

5 by McCuaig and
Shepherd in [8] for the connected graph G which has minimum degree at least
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two and is not one of seven exceptional graphs. Reed in [11] considered the
case for the graphs with minimum degree at least three, and obtained that
γ(G) ≤ 3n

8 . In this direction, an obvious conjecture (see [6]) seems to be
that for any graph G with δ(G) ≥ k, γ(G) ≤ k

3k−1n. However, Caro and
Roditty (see [2], [3] and also [1]) proved that for any graph G with minimum
degree δ, γ(G) ≤ n[1 − δ( 1

δ+1 )1+
1
δ ]. For δ(G) ≥ 7, it is easy to verify that

n[1− δ( 1
δ+1 )1+

1
δ ] < δ

3δ−1n by using calculus. Thus, the question remains open
only for graphs G with 4 ≤ δ(G) ≤ 6. The purpose of this paper is to give a
positive answer for the graph G with minimum degree δ(G) ≥ 4.

Main Theorem. Let G be a graph of order n with minimum degree at least
four. Then

γ(G) ≤ 4
11

n.

The proof of Main Theorem is completed by choosing a dominating set D of
G based on the so-called vertex disjoint paths cover, which was introduced by
Reed [11]. By cases analysis, we prove three basic facts, from these, |D| ≤ 4

11n
is obtained. For convenience, we use |G| for the number of vertices of the graph
G.

A cover of vertex disjoint paths of G, or simply a vdp-cover, is a set of vertex
disjoint paths P1, . . . , Pk such that V (G) = V (P1) ∪ · · · ∪ V (Pk). A path P is
called a 0-, 1- or 2-path if |P | is congruent to 0, 1 or 2 mod 3, respectively. For
a vdp-cover S of G, let Si (i = 0, 1, 2) be the set of i-paths in S. If P = P ′xP ′′,
where P ′ is an i-path and P ′′ is a j-path (and x is on neither of those paths),
then we say x is an (i, j)-vertex of P . Let P ∈ S and x be an endvertex of P .
We say that x is an out-endvertex if it has a neighbor which is not on P . If P
is a 2-path, we say that x is a (2, 2)-endvertex if it is not an out-endvertex and
is adjacent to some (2, 2)-vertex of P .

2. Choose a dominating set

In the below, we always assume that G is a graph of order n with δ(G) ≥ 4.
For convenience, we assume that G is connected. We first choose a vdp-cover
S of G such that

(1) 2|S1|+ |S2| is minimized,
(2) Subject to (1), |S2| is minimized,
(3) Subject to (2),

∑
Pi∈S0

|Pi| is minimized,
(4) Subject to (3),

∑
Pi∈S1

|Pi| is minimized.

Let x be an out-endvertex of Pi ∈ S1 ∪ S2, y a neighbor of x on some path
Pj distinct from Pi. Let Pj = P ′jyP ′′j . Then, we have the following assertion
(for the proof, see [11], Observation 1-3).

Assertion 1. Pj is not a 1-path. If Pj is a 0-path, then both P ′j and P ′′j are
1-paths; if Pj is a 2-path, then both P ′j and P ′′j are 2-paths.
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Having chosen the minimal vdp-cover S = {P1, . . . , Pk}, we rearrange the
paths of S to obtain a new vdp-cover S′ = {P ′1, . . . , P ′k} such that P ′i is a Hamil-
ton path on V (Pi), and so that the number of out-endvertices is maximized,
and subject to this, the number of (2, 2)-endvertices is maximized. Clearly, S′

is still minimal with respect to the above four conditions. For convenience, we
still denote the new vdp-cover of G by S.

Now, for each 1-path P in S which has an out-endvertex we choose some
vertex y 6∈ P which is adjacent to the endvertex of P . We say that y is the
acceptor for P . For each 2-path P in S which has two out-endvertices, for each
of these endvertices we choose a vertex of G − P which is adjacent to it and
designate it as the acceptor corresponding to that endvertex. For each 2-path
P in S which has precisely one out-endvertex x and |P | ≤ 8, we choose some
vertex y 6∈ P which is adjacent to it and designate it as the acceptor for P .
We call a path in S accepting if it contains an acceptor. We next specify a
set A ⊆ S of 2-paths. Initially, let A be the set of accepting 2-paths. While
there is any out-endvertex x of a path in A for which we have not chosen an
acceptor, we choose a neighbor of this endvertex in G− P and designate it as
an acceptor for x. If this new acceptor is on a previously non-accepting 2-path
P ′, then we add P ′ to A. We continue this process until there is an acceptor
for every out-endvertex of the paths in A. In addition, for any (2, 2)-endvertex
x of any path P in A, we choose a (2, 2)-vertex y of P which is adjacent to x
and designate it as an inacceptor for x.

For any accepting 2-path P , we partition P = P1P2P3 such that P1 and P3

are both 1-paths which contain neither acceptors nor inacceptors, and maximal
with this property. We say that P1 and P3 are tips of P and P2 is its central
path. By the maximality of P1, P3 and Assertion 1, if x ∈ P2 is adjacent in P2

to an endvertex of P2, then it is an acceptor or inacceptor.

Before the description of choosing the dominating set, we present the fol-
lowing fact.

Assertion 2. Let P ∈ S be a 2-path. If P has precisely one out-endvertex x

and |P | ≤ 8, then V (P ) has a subset of b |P |3 c vertices which dominate V (P )−x.

We will prove Assertion 2 in next section. Now, we choose a dominating set
D of G in the following manner:

Step 1: For each 0-path P , we put every (1, 1)-vertex of P in D.

Step 2: For each accepting 2-path P , we put into D every (2, 2)-vertex of
P which is in the central path of P .

Step 3: For each 1-path P with at least one out-endvertex, we choose b |P |3 c
vertices of P which dominate all of the vertices of P except for the endvertex
of P which is adjacent to the acceptor of P . We put these vertices in D. For
each non-accepting 2-path P with two out-endvertices we choose b |P |3 c vertices
of P which dominate its interior vertices. We put these vertices in D. For each
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non-accepting 2-path P which has precisely one out-endvertex x and |P | ≤ 8,
we choose b |P |3 c vertices of P which dominate all of the vertices of P except for
the endvertex x (By Assertion 2, we can do that). We put these vertices in D.

Step 4: For each 1-path P with no out-endvertex, we choose a subset of
V (P ) which dominate V (P ) to put in D. If possible, we choose a set of b |P |3 c
vertices; otherwise we choose a set of d |P |3 e vertices. For each non-accepting
2-path P which has no out-endvertex, or has precisely one out-endvertex and
|P | ≥ 11, we choose a subset of V (P ) which dominate V (P ) to put in D. If
possible, we choose a set of b |P |3 c vertices, otherwise we choose a set of d |P |3 e
vertices.

Step 5: For each tip P1 of an accepting 2-path P , if the common endvertex
x of P1 and P is adjacent to a vertex chosen in Step 1 or 2, we choose b |P1|

3 c
of vertices of P1 which dominate the remaining vertices of P1 and put them in
D. If x is not adjacent to a vertex chosen in Step 1 or 2, we choose a set which
dominates P1 to put in D. If possible, we choose b |P1|

3 c vertices, otherwise we
choose d |P1|

3 e vertices.

It is easy to see that D is a dominating set of G (or see [11], Observation
5-8). To calculate the size of D, we define the following sets.

(i) O1: the set of 1-paths P which either have an out-endvertex or contain
a dominating set of size b |P |3 c.

(ii) O2: the set of non-accepting 2-paths P which have two out-endvertices
or contain a set of size b |P |3 c that dominates all of the vertices of P , and all
non-accetping 2-paths which have precisely one out-endvertex and |P | ≤ 8.

(iii) I1: the set of 1-paths not in O1.
(iv) I2: the set of non-accepting 2-paths not in O2.
(v) E: the set of such tips P1 of an accepting 2-path P , which is in E if

and only if the corresponding endvertex of P is neither an out-endvertex nor a
(2, 2)-endvertex and we cannot dominate P1 using b |P1|

3 c vertices.
(vi) W : the set of (2, 2)-endvertices of accepting 2-paths for which we have

chosen an inacceptor.
Then

|D| =
∑

P∈O1

|P | − 1
3

+
∑

P∈O2

|P | − 2
3

+
∑

P∈I1

|P |+ 2
3

+
∑

P∈I2

|P |+ 1
3

+
∑

P∈S0

|P |
3

+
∑

P∈A

|P | − 2
3

+ |E|.

Equivalently,

|D| = n

3
− 1

3
|O1| − 2

3
|O2|+ 2

3
|I1|+ 1

3
|I2| − 2

3
|A|+ |E|.

Note that each accepting 2-path corresponds to an endvertex of some path
in O1 ∪ O2 or to an endvertex of an accepting 2-path of A which is not in
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E ∪ W . Thus, we have |A| ≤ |O1| + 2|O2| + 2|A| − |E| − |W |, and so |E| ≤
|O1|+ 2|O2|+ |A| − |W |. Also, |E| ≤ 2|A| − |W |. Thus,

|D| ≤ n

3
+

2
3
|I1|+ 1

3
|I2|+ |E|

2
− |W |

2
.

For each element T of E, there is an accepting 2-path PT such that T is a
tip of PT . Now we define E′ ⊆ E by saying that each T ∈ E is in E′ if the
endpoint of PT not in T is not an element of W .

Clearly, |E′| ≥ |E| − |W |, and so

(∗) |D| ≤ n

3
+

2
3
|I1|+ 1

3
|I2|+ 1

2
|E′|

In next section, we will prove some facts (Lemma 3, Lemma 4, Lemma 5),
with (∗) that imply |D| ≤ 4

11n.

3. 1-paths with short length

Essentially, in this section we will prove that every 1-path P of short length
with some additional conditions can be dominated by b |P |3 c vertices. We will
assume the same conditions and use the notations as in last section. We first
state three simple observations.

(Q1) Let P = x1x2 · · ·x3k+1 (k ≥ 1) be a 1-path. If x1 is adjacent to a
vertex x3i for some 1 ≤ i ≤ k, then P can be dominated by k vertices.

(Q2) Let C be a cycle of 3k + 1 (k ≥ 1) vertices, B = b1b2b3 be a path such
that V (C) ∩ V (B) = ∅. If b2 has a neighbor in C, then V (C) ∪ V (B) can be
dominated by k + 1 vertices.

(Q3) Let P = x1x2 · · ·x3k−1 (k ≥ 1) be a path, and x 6∈ P . If x is adjacent
to some vertex of ∪k

i=1{x3i−2, x3i−1}, then V (P )∪ {x} can be dominated by k
vertices.

Next we show two technical results.

Lemma 1. Let C = x1x2 · · ·x3k+1x1 (1 ≤ k ≤ 4) be a cycle of G, H the
subgraph induced by V (C). If N(xi) ⊆ V (C) for any xi ∈ V (C) such that there
is a Hamilton path from xi to x3k+1 in H, then H has a dominating set of k
vertices.

Proof. Assume to the contrary that H has no any dominating set of k vertices.
We only prove for k = 4. For k ≤ 3 we can deduce a contradiction by the same
reasoning.

Let k = 4 and C = x1x2 · · ·x13x1. Then, both x1, x12 are the endvertices of
some Hamilton paths to x13 in H, thus N(x1) ⊆ V (C) and N(x12) ⊆ V (C).
First we check the possible neighbors of x1. By (Q1), x1 is not adjacent to any
of x3, x6, x9, x12. If x1 is adjacent to x10, as x12 has a neighbor in the cycle
C ′ = x1x2 · · ·x10x1, by (Q2), then H has a dominating set of four vertices,
a contradiction. On the other hand, if x12 is adjacent to both x8 and x9,
then x10 is an endvertex of a Hamilton path of H to x13, by applying (Q2)
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to x9x10x11 and the cycle x1x2 · · ·x8x12x13x1, then H has a dominating set of
four vertices, a contradiction. Thus, if x1 is adjacent to x7, applying (Q2) to
x11x12x13 and the cycle x1x2 · · ·x7x1, x12 is not adjacent to any vertex of the
cycle x1x2 . . . x7x1. So we can deduce that x12 is adjacent to both x8 and x9,
a contradiction.

Hence, x1 has extra neighbors only in {x4, x5, x8, x11}. Symmetrically, x12

has extra neighbors only in {x9, x8, x5, x2}. Now, if x1 is adjacent to x4, by
(Q2), then x12 is not adjacent to x2. As x12 is not adjacent to both x8 and x9,
x12 is adjacent to x5. Note that, x3 is an endvertex of a Hamilton path of H to
x13. As x1 dominates x2, x4, x13, H has a dominating set of four vertices for any
choice of the neighbor of x3 in the 8-cycle C ′′ = x5x6 · · ·x12x5, a contradiction.
So, x1 is not adjacent to x4, and symmetrically, x12 is not adjacent to x9. If x1 is
adjacent to x11, then x10 is an endvertex of a Hamilton path of H to x13. Thus,
x12 is still not adjacent to x8, for otherwise, we apply (Q2) to x9x10x11 and the
cycle x1x2 · · ·x8x12x13x1 to obtain a contradiction. So, x12 is adjacent to both
x2, x5. Then, x3 is an endvertex of a Hamilton path of H to x13. By applying
(Q2) to x2x3x4 and the cycle x1x11x10 · · ·x5x12x13x1, also a contradiction.
Hence, x1 is adjacent only to both x5 and x8, and symmetrically, x12 is also
adjacent to only both x8, x5. Then, x7 is an endvertex of a Hamilton path of
H to x13. By (Q1) and (Q2), x7 is adjacent to neither x9 nor any vertex of the
cycle x1 · · ·x5x12x13x1. Thus, x7 is adjacent to x10. Then, {x2, x5, x10, x12}
dominates H, a contradiction. This proves Lemma 1. ¤

Lemma 2. Let C = x1x2 · · ·x3k+2x1 (1 ≤ k ≤ 4) be a cycle of G, H the
subgraph induced by V (C). If N(xi) ⊆ V (C) for any xi ∈ V (C) such that
there is a Hamilton path from xi to x3k+2 in H, then V (C) − {x3k+2} can be
dominated by k vertices.

Proof. Assume to the contrary that V (C)− {x3k+2} can not be dominated by
k vertices. We still prove only for k = 4 and omit for k ≤ 3.

Let k = 4 and C = x1x2 · · ·x14x1. Then, both x1, x13 are the endvertices
of some Hamilton paths to x14 in H, thus N(x1) ⊆ V (C) and N(x13) ⊆
V (C). Note that, x1 and x13 are symmetrical. By (Q1), x1 is not adjacent
to any of x3, x6, x9, x12. If x1 is adjacent to both x4, x5, then both x2, x3

are the endvertices of some hamiltonian paths of H to x14. As x1 dominates
x2, x4, x5, by (Q3), x3 has extra neighbors only in {x5, x8, x11, x14}. On the
other hand, as x4 dominates x1, x3, x5, by (Q3), x2 has at least one neighbor
in {x5, x8, x11, x14}. Hence, {x5, x8, x11, x14} dominates V (C) − {x3k+2}, a
contradiction. So, x1 is not adjacent to both x4, x5, and symmetrically, x13 is
not adjacent to both x9, x10. In the sequel, we distinguish five cases according
to the possible neighbors of x1.

1. x1 is adjacent to x13. Then, both x2 and x12 are the endvertices of Hamil-
ton paths to x14 in H. As x1 has one more neighbor in {x4, x5, x7, x8, x10, x11},
we consider the following subcases.
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(1.1) x1 is adjacent to x4. Then, x3 is an endvertex of Hamilton path to x14

in H. As x1 dominates x2, x4 and x13, by (Q3), x3 has extra neighbors only in
{x7, x10, x13, x14}. If x3 is adjacent to x10, as N(x12) ⊆ V (C), we apply (Q2)
to x11x12x13 and the cycle x1x4x5 · · ·x10x3x2x1, then there is a dominating set
of four vertices of V (C)−{x14}, a contradiction. If x3 is adjacent to x13, then
x13 dominates x1, x3 and x12. As N(x2) ⊆ V (C), still by (Q3), then x2 has
extra neighbors only in {x6, x9, x12, x14}, and thus x2 is adjacent to at least
one vertex of {x6, x9, x12}. Then, {x4, x6, x9, x12} dominates V (C)− {x14}, a
contradiction. Hence, x3 is adjacent to x14. On the other hand, as x4 dominates
x1, x3 and x5, by (Q3), x2 has extra neighbors only in D′ := {x5, x8, x11, x14}.
Then, D′ dominates V (C)− {x14}, a contradiction.

(1.2) x1 is adjacent to x10. As N(x12) ⊆ V (C), by applying (Q2) to
x11x12x13 and the cycle x1x2 · · ·x10x1, we have that four vertices dominate
V (C)− {x14}, a contradiction.

(1.3) x1 is adjacent to x5. By (1.1) and (1.2), assume that both x1, x13 are
not adjacent to x4 and x10. Now x4 is an endvertex of Hamilton path to x14 in
H, we have N(x4) ⊆ V (C). By (Q1) and above result, x4 has extra neighbors
only in {x7, x8, x10, x11, x14}. If x4 is adjacent to both x7 and x8, then x6 is
an endvertex of a Hamilton path of H to x14, and thus, by applying (Q2) to
x5x6x7 and the cycle x1 · · ·x4x8 · · ·x13x1, we have a contradiction. If x4 is
adjacent to x10, then we have a 10-cycle without three vertices {x11, x12, x13},
thus, by (Q2), we also have a contradiction. If x4 is adjacent to x14, then
x3x2x1x13 · · ·x4x14 is a Hamilton path of H, and thus N(x3) ⊆ V (C). By
applying (Q2) to x2x3x4 and the cycle x1x5 · · ·x13x1, we have a contradiction.
Summarizing, x4 must be adjacent to x11. Then, x11 dominates x10, x12, x4.
By applying (Q3) to x13 and the path x3x2x1x5 · · ·x9, we have that x13 must
be adjacent to x7. As N(x2) ⊆ V (C), by (Q2), x2 has no neighbor in the cycle
x7x8 · · ·x13x7. Again by (Q1), x2 has two extra neighbors only in {x5, x6, x14}.
If x2 is adjacent to x14, then x3 is also an endvertex of a Hamilton path of
H to x14, by using the same reasoning as above, we have a contradiction.
Thus, x2 is adjacent to both x5, x6. By applying (Q2) to x3x4x5 and the cycle
x1x2x6 · · ·x13x1, we have a contradiction.

(1.4) x1 is adjacent to x7. Then, by (Q2) and (Q1), x12 has extra neigh-
bors only in {x8, x9, x14}. If x12 is adjacent to both x8 and x9, then x10 is
also an endvertex of a Hamilton path of H to x14, and thus N(x10) ⊆ V (C).
By applying (Q2) to x9x10x11 and the cycle x1 · · ·x8x12x13x1, we have a con-
tradiction. So, x12 must be adjacent to x14 and one of x8, x9. In this case
x12 · · ·x1x13x14x12 is a Hamilton cycle and that x12, x13 are adjacent. Note
that x12 is adjacent to x8 or x9, this is the same situation as (1.1) or (1.3), a
contradiction.

(1.5) x1 is adjacent to x8 or x11. By symmetry and (1.1)-(1.4), x13 has one
more neighbor only in {x3, x6}. Then {x3, x6, x8, x11} dominates V (C)−{x14},
a contradiction.
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2. x1 is adjacent to x11. By 1, x1, x13 are not adjacent. As x11 dominates
{x1, x10, x12}, by (Q3), x13 has extra neighbors only in {x4, x7, x10}.

If x13 is adjacent to x10, then x12 is an endvertex of a Hamilton path of H to
x14. As x10 dominates {x9, x11, x13}, still by (Q3), x12 has extra neighbors only
in {x3, x6, x9, x14}. If x12 is adjacent to x14, then it is the same situation as 1, a
contradiction. If x12 is adjacent to x9, by noting that x13 has one more neighbor
in {x4, x7}, then {x1, x4, x7, x9} dominates V (C) − {x14}, a contradiction. If
x12 is adjacent to both x3, x6, then there is a 10-cycle x3 · · ·x10x13x12x3 which
excludes x2x1x11. As x1 has one more neighbor in this cycle, by (Q2), we also
have a contradiction.

Otherwise, x13 is adjacent to both x4 and x7. Then, x5 is an endvertex of a
Hamilton path of H to x14, so N(x5) ⊆ V (C). By (Q2), x5 has no neighbor in
the cycle x7x8 · · ·x13x7. By (Q1), x5 has extra neighbors only in {x1, x3, x14}.
If x5 is adjacent to x1, then x2 is an endvertex of a Hamilton path of H
to x14, by applying (Q2) to x1x2x3 and the cycle x4x5 · · ·x13x4, we have a
contradiction; otherwise, x5 is adjacent to x3, then {x1, x5, x9, x13} dominates
V (C)− {x14}, also a contradiction.

3. x1 is adjacent to x10. By 1 and 2, x1 has one more neighbor only in
{x4, x5, x7, x8}. In this case, x9 is an endvertex of a Hamilton path of H to
x14. Clearly, by applying (Q2), we have the following claim.

(F ) x12 has no neighbor in the cycle x1x2 · · ·x10x1.

Then, x9, x13 are not adjacent, for otherwise x12 is an endvertex of a Hamilton
path of H to x14, and thus N(x12) ⊆ V (C), as δ(G) ≥ 4, contradicting (F ).
Hence, by noting that x13, x1 are symmetrical, x13 has extra neighbors only
in {x10, x7, x6, x4}. Clearly, by (Q1), x9 is not adjacent to x12. And also x9

is not adjacent to x11, for otherwise x12 is an endvertex of a Hamilton path
of H to x14, contradicting (F ). So, by (Q1), x9 has extra neighbor only in
{x2, x3, x5, x6, x14}. In the following we distinguish four subcases.

(3.1) x1 is adjacent to x4. Then, x3 is an endvertex of a Hamilton path of H
to x14. As x1 dominates {x2, x4, x10}, by (Q3) and (Q1) and above result, x3

has extra neighbors only in {x7, x10, x11, x14}. If x3 is adjacent to x7, we apply
(Q2) to x8x9x10 and the cycle x1x2x3x7 · · ·x4x1 to obtain a contradiction. If x3

is adjacent to both x11, x14, then it is the same situation as 2, a contradiction.
If x3 is adjacent to both x10, x11, then x2 is an endvertex of a Hamilton path
of H to x14. Thus, we can similarly deduce that x2 has extra neighbors only
in {x5, x8, x11, x14}, and hence {x5, x8, x11, x14} dominates V (C) − {x14}, a
contradiction. So, x3 must be adjacent to both x10, x14. Next we check the
neighbors of x9.

By (Q2), x9 has no neighbors in the cycle x1x2x3x4x1. Then, x9 has
extra neighbors only in {x5, x6, x14}. First assume that x9 is adjacent to
x5. Then, x13 is not adjacent to x7, for otherwise {x2, x5, x7, x11} domi-
nates V (C) − {x14}, a contradiction. Moreover, if x13 is adjacent to x6, then
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x12x11x10x1 · · ·x5x9 · · ·x6 x13x14 is a Hamilton path of H, contradict (F ).
Hence, in this case, x13 is adjacent to both x4, x10. Note that

x6 · · ·x9x5 · · ·x1x10 · · ·x14

is a Hamilton path of H, we have N(x6) ⊆ V (C). We can similarly deduce
that x6 has extra neighbors only in {x9, x10, x14}. If x6 is adjacent to x9,
then x7x8x9x6 · · ·x1x10 · · ·x14 is a Hamilton path of H; if x6 is adjacent to
x10, then x7x8x9x5x6x10 · · ·x13x4 x3 · · ·x14 is a Hamilton path of H. Thus,
N(x7) ⊆ V (C). Now we apply (Q2) to the cycle x1 · · ·x5x9x10x1 and the
cycle x10 · · ·x13 x10 to deduce that x7 has only one extra neighbor x14, a
contradiction.

Hence, x9, x5 are not adjacent, and thus x9 is adjacent to both x6, x14. Now
if x13 is adjacent to x7, then x12x11x10x1 · · ·x6x9x8x7x13x14 is a Hamilton
path of H, contradict (F ). So, x13 has extra neighbors only in {x4, x6, x10}. If
x13 is adjacent to both {x4, x10}, by symmetry, we can similarly deduce that
x5 is adjacent to both x8, x14, and thus {x3, x7, x11, x14} dominates V (C) −
{x14}, a contradiction. If x13 is adjacent to both {x4, x6}, by noting that x13

dominates {x4, x6, x12} and that both x9, x12 are not adjacent to x5, we can
deduce that x5 has only one extra neighbor x14, a contradiction. If x13 is
adjacent to both {x6, x10}, then x5 · · ·x1x10 · · ·x13x6 · · ·x9x14 is a Hamilton
path of H. By (Q1), x5 is not adjacent to x8. If x5 is adjacent to x7 or x14,
then {x3, x7, x11, x14} dominates V (C) − {x14}, a contradiction. As x5 is not
adjacent to x9, then x5 has a neighbor in the cycle C ′1 := x1x2x3x10x1 or the
cycle C ′2 := x10x11x12x13x10. By applying (Q2) to x4x5x6 and C ′1, or to x4x5x6

and C ′2, we have a contradiction.

By (3.1) and the symmetry of x1 and x13, x13 is also not adjacent to both
x4 and x10.

(3.2) x1 is adjacent to x5. In this case, if either x13 is adjacent to x4, or x13

is adjacent to both x6, x7, then x12 is an endvertex of a Hamilton path of H
to x14, contradict (F ). So, we only need check for that x13 is adjacent to both
x6, x10, or to both x7, x10.

First, let x13 be adjacent to both x6, x10. Then, x11 is an endvertex of
a Hamilton path of H to x14. As x13 dominates {x6, x10, x12}, if x11 has
one neighbor in the cycle x1 · · ·x5x1, then we can easily find four vertices
to dominate V (C) − {x14}. On the other hand, if x11 is adjacent to x7,
then x12x11x7 · · ·x10x13x6 · · ·x1x14 is a Hamilton path of H, contradict (F ).
Clearly, x11 is not adjacent to x8, x9, x13, and thus x11 is adjacent to both
x6, x14. Then, x2 · · ·x5x1x10 · · ·x6x11 · · ·x14 is a Hamilton path of H. By
(Q2), x2 has no neighbor in the cycle C ′3 := x10 · · ·x13x10. If x2 is adjacent
to any vertex in {x5, x6, x9}, then x3 is an endvertex of a Hamilton path of
H to x14. Thus, by applying (Q2) to x2x3x4 the cycle x1x5 · · ·x10x1 and C ′3,
we have a contradiction. Otherwise, by (Q1), x2 is adjacent to x8. Then
{x4, x8, x10, x13} dominates V (C)− {x14}, a contradiction.
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Secondly, let x13 be adjacent to both x7, x10. Then, x8 is an endvertex of
a Hamilton path of H to x14. By applying (Q2) to x7x8x9 and the cycle C ′3,
we have that x8 has no neighbor in C ′3. As x10 dominates x1, x9, x11, we apply
(Q3) to x8 and the path x12x13x7 · · ·x2, then x8 has extra neighbors only in
{x14, x4, x1}. Then, x8 is adjacent to x1 or x4, and thus, x12 is an endvertex
of a Hamilton path of H to x14, contradict (F ).

(3.3) By above, x1 is adjacent to x7 or x8. If x1 is adjacent to x7, then we
apply (Q2) to x8x9x10 and the cycle x1 · · ·x7x1 to deduce a contradiction. If
x1 is adjacent to x8, then, by (F ) and (Q3), we can deduce that x13 is adjacent
to both x4, x10, as above claim, also a contradiction.

4. x1 is adjacent to x8. From 1-3 and the symmetry, x13 has extra neigh-
bors only in {x6, x7, x9, x10}. If x13 is adjacent to x6, then {x3, x6, x8, x11}
dominates V (C)−{x14}, a contradiction. Otherwise, as x13 is not adjacent to
both x9, x10, then x13 is adjacent to x7, then x2 is an endvertex of a Hamilton
path of H to x14. By applying x1x2x3 and the cycle x7 · · ·x13x7, we know
that x7 has no neighbor in this cycle. If x2 is adjacent to both x5, x6 Then,
x4 is an endvertex of a Hamilton path H to x14, by (Q2) (for x3x4x5 and the
cycle x1x2x6x7x13 · · ·x8x1), we have a contradiction. Otherwise, x2 must be
adjacent to x14, this is the same situation as 1, a contradiction.

5. From 1-4 and the fact x1 is not adjacent to both x4, x5, we have that
x1 is adjacent to x7. Symmetrically, x13 is also adjacent to x7. On the other
hand, x1 has one more neighbor in {x4, x5}. First let x1 be adjacent to x4. As
x6 is an endvertex of a Hamilton path of H to x14, we can similarly use (Q1)
and (Q2) to deduce that, x6 has extra neighbors only in {x8, x10, x11, x14}. As
the former cases shown, x6 is not adjacent to x14. Thus, x6 is adjacent to
either x8, or both x10, x11. If x6 is adjacent to x8, then x12 is an endvertex of
a Hamilton path of H to x14, and thus, by (Q2) and (Q1) and 1 shown, x12

is adjacent to both x8, x9. Then, x10 is an endvertex of a Hamilton path of
H to x14. Again by Q2 for x9x10x11 and the cycle x1 · · ·x8x12x13x1, we have
a contradiction. Otherwise, x6 is adjacent to both x10, x11. Then, x9 is an
endvertex of a Hamilton path of H to x14. By (Q2) for x8x9x10 and the cycle
x1 · · ·x6x11x12x13x7x1, we also have a contradiction.

Hence, x1 is adjacent to x5, and by symmetry, x13 is adjacent to x9. As
x6 is an endvertex of a Hamilton path of H to x14, by (Q1), x6 has extra
neighbors only in {x2, x3, x8, x10, x11, x14}. If x6 is adjacent to x3 or x11, then
{x1, x3, x9, x12} or {x1, x4, x9, x11} dominates V (C) − {x14}, a contradiction.
If x6 is adjacent to x2, as x4 is an endvertex of a Hamilton path of H to
x14, by (Q2) for x3x4x5 and the cycles x1x2x6x7x1 and x7 · · ·x13x7, we have
a contradiction. Hence, x6 has extra neighbors only in {x8, x10, x14}, and
thus, by the former cases shown, x6 is adjacent to both x8, x10. Then, x12

is an endvertex of a Hamilton path of H to x14, then, by (Q2) for x11x12x13

and the cycle x1 · · ·x6x10 · · ·x7x1, we also have a contradiction. This proves
Lemma 2. ¤
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A lasso L is defined as a graph by identifying one vertex in a cycle C with an
endvertex of a path P . The other endvertex of the path P is called the end of
L, the common vertex of C and P is called the connecting vertex (sometimes,
with a little abuse, we also regard a cycle as a lasso). Now we use Lemma 1
and Lemma 2 to deduce the results we need.

Lemma 3. Let P ∈ S be a 2-path with at most one out-endvertex. If |P | ≤ 8,
then V (P ) has a subset of b |P |3 c vertices which dominate all vertices of V (P )
except for the possible out-endvertex.

Proof. Clearly, Lemma 3 implies Assertion 2. If |P | = 2, then P has two out-
endvertices. If |P | = 5 and P has at most one out-endvertex, it is also easy to
verify that P can be dominated by one vertex. Now let P = x1x2 · · ·x8. Let
H be the subgraph induced by V (P ). If |G| = 8, then G = H. As each vertex
of G has degree at least four, we can verify directly that H can be dominated
by two vertices. So, let |G| > 8. We first claim that P has one out-endvertex.
Otherwise, both x1 and x8 have at least four neighbors in V (P ), from that it
is easy to see that H has a Hamilton cycle. As G is connected, there exists at
least one edge joining V (P ) and V (G) − V (P ). By our choices to maximize
the number of the out-endvertices of S. This is a contradiction. Hence, P has
precisely one out-endvertex.

Let x8 be the out-endvertex of P . We choose a lasso L with x8 as the end of
L, such that the cycle of L has maximum length. For convenience, we denote
the vertices of L along a Hamilton path of L from the end as x8, x7, . . . , x1. Let
v be the connecting vertex. Clearly, x1 is adjacent to v. Let C ′ = x1x2 · · · vx1.
By (Q1), v = x3k+1 or v = x3k+2 (1 ≤ k ≤ 2). By the choice of L, C ′ satisfies
the condition of Lemma 1 or Lemma 2. By Lemma 1 or Lemma 2, we can
deduce that V (P )− {x8} can be dominated by two vertices. ¤
Lemma 4. Let P ∈ S be a 1-path with no out-endvertex. If |P | ≤ 19, then
P can be dominated by b |P |3 c vertices.

Proof. We first prove that, if |G| = |P | = 19 and G has a Hamilton cycle, then
G has a dominating set of 8 vertices. Let C = b1b2 · · · b19b1 be a Hamilton
cycle of G. Assume the conclusion is not true. By (Q1), b1 is not adjacent to
b3k (1 ≤ k ≤ 8). Note that b1 is adjacent to b5, for otherwise, by applying (Q2)
for b2b3b4 and the cycle b1b5 · · · b19b1, we have a contradiction. Similarly, b3

is also not adjacent to any of b5, b7. If b1 is adjacent to b8, then, by (Q2) for
b2b3b4 and the cycle b1b8 · · · b19b1, b3 has no neighbor in this cycle, and thus,
b3 must be b5 or b7, a contradiction. So, b1 is also not adjacent to b8. By
symmetry, b1 is not adjacent to any of x16, x13. Clearly, for each 2 ≤ i ≤ 19,
bi has the similar property as b1. Now, if b1 is adjacent to b4, as b1 dominates
b2, b4, b19, by (Q3), b3 has extra neighbors only in {b13, b16, b19}; as b4 dominates
b1, b3, b5, by (Q3), b2 has extra neighbors only in {b5, b8, b11}. Since δ(G) ≥ 4,
{b5, b8, b11, b13, b16, b19} dominates V (G), a contradiction. Hence, b1 is also
not adjacent to b4, symmetrically, not adjacent to b17. And hence, b1 is not
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adjacent to b11, for otherwise, we look at b6, as b6 has similar properties as b1,
then b6 must have neighbors in the cycle b1b11 · · · b19b1, and thus, by applying
(Q2) for b5b6b7 and this cycle, we have a contradiction. Symmetrically, b1 is
not adjacent to b10. So, b1 is adjacent to both x7, x14. Similarly, b3 is adjacent
to both b9, b16. Then, {b1, b5, b9, b12, b15, b18} dominates V (G), a contradiction.
So, in this case, G has a dominating set of 8 vertices.

Next we assume that either |G| > 19 or G has no hamiltonian cycle. Let
|P | = 3m + 1 (1 ≤ m ≤ 6). Let H be the subgraph induced by V (P ). Now
we claim that H has no Hamilton cycle. For otherwise, if |G| > |P |, as G is
connected, then P has at least one out-endvertex, a contradiction; if |G| =
|P | = 19, then G = H, contradicting that G has no Hamilton cycle. Now we
choose a lasso L in H such that the number of vertices on the cycle of the lasso
is maximum. For convenience, we label the vertices of L along a Hamilton
path on L from the end of L as x3m+1, x3m, . . . , x1. Let v be the connecting
vertex. By the labelling, x1 is adjacent to v. By (Q1) and our assumption, we
may assume that v = x3k+1 or x3k+2 (1 ≤ k < m). If k ≤ 4, then, by the
choice of L, the cycle C ′ = x1x2 · · · vx1 satisfies the condition of Lemma 1 or
Lemma 2, and thus we can obtain the desired result by Lemma 2 or Lemma 3.
So, we next let k ≥ 5. Hence, m = 6, k = 5 and |P | = 19. We still prove by
contradiction.

Case 1. v = x3k+1 = x16. Denote the cycle C ′ := x1x2 · · ·x16x1. By the
choice of L, N(x1) ⊆ V (C ′) and N(x15) ⊆ V (C ′). We can similarly as in the
proof of Lemma 1 deduce the following.

(F ) x1 is not adjacent to both x4, x5; x15 is not adjacent to both x9, x10.

By (Q2), x1 is not adjacent to x13. If x1 is adjacent to x10, then, by (Q2), x15

has no neighbor in the cycle x1 · · ·x10x1, and thus, by (Q1), x15 is adjacent to
both x9, x10, a contradiction. So, x1 is also not adjacent to x10. Symmetrically,
x15 is not adjacent to any of x4, x7. Now, we check the possible neighbors of
x19.

Clearly, N(x19) ⊆ V (P ). Moreover, by the choice of L and (Q1), x19 has
extra neighbors only in {x4, x7, x9, x12, x16} ∪ {x6, x10}. If x19 is adjacent to
x6, we look at the Hamilton pathx1 · · ·x6x19 · · ·x7 of H, by the choice of L and
(Q1), we can deduce that x1 is adjacent to both x4, x5, contradict (F ). Note
that x6 and x10 are symmetrical, we have x19 is not adjacent to any of x6, x10.
If x19 is adjacent to both x4, x9, then we can similarly deduce that x1 must
be adjacent to both x4, x8, and thus x2x3 · · ·x1x8x16x15 · · ·x9x19x18x17 is a
hamiltonian path of H. By applying (Q2) for x1x2x3 and the cycle x4 · · ·x19x4,
we have a contradiction. Hence, x19 is adjacent to at most one of x4, x9, and
symmetrically, is adjacent to at most one of x7, x12. So, x19, x16 are adjacent.
Thus, x17 is also an endvertex of a hamiltonian path of H. Then, x17, x19 have
the same properties.
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Note that x19 must be adjacent to one of x4, x9, and one of x7, x12. First let
x19 be adjacent to x4. As x17 is also adjacent to one of x7, x12, if x17 is adjacent
to x4, then {x2, x6, x9, x12, x15, x19} dominates P ; if x17 is adjacent to x7, then
x7 · · ·x16x1 · · ·x4x19x18x17x7 is a cycle of H which exclude x5, x6, contradict
the choice of L. Then, by symmetry, x19 is adjacent to both x7, x9. Also, x17 is
adjacent to these two vertices. Hence, x1 · · ·x7x19x18x17x9 · · ·x16x1 is a cycle
of H which exclude x8, contradict the choice of L.

Case 2. v = x3k+2 = x17. By (Q1) and the choice of L, x19 is not adjacent
to any of x17, x1, x16. As x17 dominates x18, x1, x16, by (Q3), x19 has extra
neighbors only in {x4, x7, x10, x13}. Since x19 is adjacent to three of them,
by symmetry, we assume that x19 is adjacent to both x4, x7. Then, x5 is an
endvertex of a Hamilton path of H, and thus N(x5) ⊆ V (P ). As x7 · · ·x19x7

is a 13-cycle, by looking at x4x5x6 and this cycle, we deduce that x5 has no
neighbor in this cycle. So, x5 has extra neighbors only in {x1, x2, x3}. If
x5 is adjacent to x3, then {x5, x1, x15, x12, x9, x19} dominates P ; otherwise
x5 is adjacent to both x1, x2, then {x4, x5, x8, x11, x14, x17} dominates P , a
contradiction. This proves Lemma 4. ¤

Lemma 5. Let T ∈ E′ be a tip of a 2-path P in A. If |T | ≤ 13, then T can be
dominated by b |T |3 c vertices.

Proof. Let T = a0 · · · a3m+1 ∈ E′ (m ≤ 4) and C = c0 · · · cl be the central path
of P . Assume that c0 is adjacent to a3m+1 on the path P . By definition, c1 is
an acceptor or inacceptor. As T ∈ E′, neither endpoint of P is (2, 2)-endpoint,
and thus c1 is an acceptor. We first present a claim (for the proof, see [11,
p. 285, Fact 11]).

Claim. a0 is only adjacent to the vertices of T ∪ {c0}.
By the choice of S and the claim, if a′0 · · · a′3m+1 is a Hamilton path on V (T )

such that a′3m+1 is adjacent to c0, then a′0 is also only adjacent to the vertices
of T ∪ {c0}.

Let H be the subgraph induced by V (T ) ∪ {c0}. We choose a lasso L
with c0 as the end of L, such that the cycle of L has maximum length. For
convenience, we denote the vertices of L along a hamiltonian path of L from c0

as x3m+2, x3m+1, . . . , x1. Let v be the connecting vertex. Clearly, x1 is adjacent
to v. Let C ′ = x1x2 · · · vx1. By (Q1), v = x3k+1 or v = x3k+2 (1 ≤ k ≤ m ≤ 4).
By the choice of L, C ′ satisfies the conditions of Lemma 1 or Lemma 2. By
Lemma 1 or Lemma 2, we can deduce the desired result. ¤

Proof of Main Theorem. By Lemma 4, |P | ≥ 22 for any path P in I1. By
Lemma 3, |P | ≥ 11 for any path P in I2. Hence,

∑

P∈I1

|P | ≥ 22|I1|;
∑

P∈I2

|P | ≥ 11|I2|.
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By Lemma 5, ∑

P∈A

|P | ≥ 17|E′|.

From that we have,

n ≥
∑

P∈I1

|P |+
∑

P∈I2

|P |+
∑

P∈A

|P | ≥ 22|I1|+ 11|I2|+ 17|E′|,

yielding, n
33 ≥ 2

3 |I1| + 1
3 |I2| + 1

2 |E′|. Combining with (∗), we have |D| ≤ 4
11n.

This proves Main Theorem. ¤

Remark. We have verified by the same method, that the conjecture for the
remaining two cases k = 5, 6 is also true.
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