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CHARACTERIZING THE MINIMALITY AND MAXIMALITY
OF ORDERED LATERAL IDEALS IN ORDERED

TERNARY SEMIGROUPS

Aiyared Iampan

Abstract. In 1932, Lehmer [4] gave the definition of a ternary semi-
group. We can see that any semigroup can be reduced to a ternary
semigroup. In this paper, we give some auxiliary results which are also
necessary for our considerations and characterize the relationship between
the (0-)minimal and maximal ordered lateral ideals and the lateral sim-
ple and lateral 0-simple ordered ternary semigroups analogous to the char-
acterizations of minimal and maximal left ideals in ordered semigroups
considered by Cao and Xu [2].

1. Introduction and preliminaries

In 1995, Dixit and Dewan [3] introduced and studied the properties of
(quasi-, bi-, left, right) lateral ideals in ternary semigroups. In 2000, Cao
and Xu [2] characterized the minimal and maximal left ideals in ordered semi-
groups and gave some characterizations of minimal and maximal left ideals in
ordered semigroups. In 2002, Arslanov and Kehayopulu [1] characterized the
minimal and maximal ideals in ordered semigroups.

The concept of the minimal and maximal (left) ideals is the really inter-
ested and important thing about ordered semigroups. Now we characterize the
(0-)minimal and maximal ordered lateral ideals in ordered ternary semigroups
and give some characterizations of the (0-)minimal and maximal ordered lat-
eral ideals in ordered ternary semigroups analogous to the characterizations of
the minimal and maximal left ideals in ordered semigroups considered by Cao
and Xu.

Our aim in this paper is fivefold.
(1) To give the definition of an ordered ternary semigroup.
(2) To introduce the concept of lateral simple and lateral 0-simple ordered

ternary semigroups.
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(3) To characterize the properties of ordered lateral ideals in ordered ter-
nary semigroups.

(4) To characterize the relationship between the minimal and 0-minimal
ordered lateral ideals and the lateral simple and lateral 0-simple ordered
ternary semigroups.

(5) To characterize the relationship between the maximal ordered lateral
ideals and the lateral simple and lateral 0-simple ordered ternary semi-
groups.

To present the main theorems we first recall the definition of a ternary
semigroup which is important here.

A nonempty set T is called a ternary semigroup [3] if there exists a ternary
operation T × T × T → T, written as (x1, x2, x3) 7→ [x1x2x3], satisfying the
following identity for any x1, x2, x3, x4, x5 ∈ T ,

[[x1x2x3]x4x5] = [x1[x2x3x4]x5] = [x1x2[x3x4x5]].
Hence we can see that any semigroup can be considered as a ternary semigroup.
For nonempty subsets A,B and C of a ternary semigroup T , let

[ABC] := {[abc] : a ∈ A, b ∈ B and c ∈ C}.
If A = {a}, then we also write [{a}BC] as [aBC], and similarly if B = {b} or
C = {c} or A = {a} and B = {b} or A = {a} and C = {c} or B = {b} and
C = {c}. A nonempty subset S of a ternary semigroup T is called a ternary
subsemigroup [3] of T if [SSS] ⊆ S.

Example 1 ([3]). Let T = {−i, 0, i}. Then T is a ternary semigroup under the
multiplication over complex number while T is not a semigroup under complex
number multiplication.

Example 2 ([3]). Let O = ( 0 0
0 0 ) , I = ( 1 0

0 1 ) , A1 = ( 1 0
0 0 ) , A2 = ( 0 1

0 0 ) , A3 =
( 0 0

1 0 ) and A4 = ( 0 0
0 1 ). Then T = {O, I, A1, A2, A3, A4} is a ternary semigroup

under matrix multiplication.

A partially ordered ternary semigroup T is called an ordered ternary semi-
group if for any x1, x2, x3, x4 ∈ T ,

x1 ≤ x2 implies [x1x3x4] ≤ [x2x3x4] and [x4x3x1] ≤ [x4x3x2].
If (T, ·,≤) is an ordered ternary semigroup and S is a ternary subsemigroup of
T , then (S, ·,≤) is an ordered ternary semigroup. For a subset H of an ordered
ternary semigroup T , we denote (H] := {t ∈ T : t ≤ h for some h ∈ H} and
H ∪ a := H ∪ {a} for all a ∈ T . If H = {a}, we also write ({a}] as (a]. We
see that H ⊆ (H], ((H]] = (H]. For subsets A and B of an ordered terna-
ry semigroup T , we have (A] ⊆ (B], if A ⊆ B and (A ∪ B] = (A] ∪ (B]. A
nonempty subset M of an ordered ternary semigroup T is called a lateral ideal of
T if [TMT ] ⊆ M . A lateral ideal M of an ordered ternary semigroup T is called
an ordered lateral ideal of T if for any b ∈ T and a ∈ M, b ≤ a implies b ∈ M .
The intersection of all ordered lateral ideals of a ternary subsemigroup S of
an ordered ternary semigroup T containing a nonempty subset A of S is the
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ordered lateral ideal of S generated by A. For A = {a}, let MS(a) denote the
ordered lateral ideal of S generated by {a}. If S = T , then we also write MT (a)
as M(a). An element a of an ordered ternary semigroup T with at least two
elements is called a zero element of T if [at1t2] = [t1at2] = [t1t2a] = a for all
t1, t2 ∈ T and a ≤ t for all t ∈ T and we denote it by 0. If T is an ordered ter-
nary semigroup with zero, then every ordered lateral ideal of T contains a zero
element. An ordered ternary semigroup T without zero is called lateral simple
if it has no proper ordered lateral ideals. An ordered ternary semigroup T with
zero is called lateral 0-simple if it has no nonzero proper ordered lateral ideals
and [TTT ] 6= {0}.

We shall give an example of an ordered ternary semigroup without zero
which there exists a ternary subsemigroup with zero.

Example 3. Let Z be the set of all integers. Define multiplication on Z by
[xyz] = min{x, y, z} for all x, y, z ∈ Z. Then Z is an ordered ternary semigroup
without zero under usual partial order. Let N be the set of all positive integers.
Then N is a ternary subsemigroup of Z with a zero element 1.

For any positive integers m and n with m ≤ n and any elements x1, x2, ..., x2n

and x2n+1 of a ternary semigroup T [5], we can write

[x1x2 · · ·x2n+1] = [x1 · · ·xmxm+1xm+2 · · ·x2n+1]
= [x1 · · · [[xmxm+1xm+2]xm+3xm+4] · · ·x2n+1].

We shall assume throughout this paper that T stands for an ordered ternary
semigroup.

The following two lemmas are also necessary for our considerations and easy
to verify.

Lemma 1.1. For any nonempty subset A of T, ([TTATT ]∪ [TAT ]∪A] is the
smallest ordered lateral ideal of T containing A.

Furthermore, for any a ∈ T ,
M(a) = ([TTaTT ] ∪ [TaT ] ∪ a].

Lemma 1.2. For any nonempty subset A of T, ([TTATT ] ∪ [TAT ]] is an
ordered lateral ideal of T.

Lemma 1.3. If T has no zero element, then the following statements are
equivalent.

(a) T is lateral simple.
(b) ([TTaTT ] ∪ [TaT ]] = T for all a ∈ T .
(c) M(a) = T for all a ∈ T .

Proof. By Lemma 1.2 and T is lateral simple, we have ([TTaTT ]∪ [TaT ]] = T
for all a ∈ T . Therefore (a) implies (b). By Lemma 1.1, we have M(a) =
([TTaTT ] ∪ [TaT ] ∪ a] = ([TTaTT ] ∪ [TaT ]] ∪ (a] = T ∪ (a] = T . Thus (b)
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implies (c). Now let M be an ordered lateral ideal of T and let a ∈ M . Then
T = M(a) ⊆ M ⊆ T , so M = T . Hence T is lateral simple, we have that (c)
implies (a). Hence the proof is completed. ¤

Lemma 1.4. If T has a zero element, then the following statements hold.
(a) If T is lateral 0-simple, then M(a) = T for all a ∈ T \ {0}.
(b) If M(a) = T for all a ∈ T \{0}, then either [TTT ] = {0} or T is lateral

0-simple.

Proof. (a) Assume that T is lateral 0-simple. Then M(a) is a nonzero ordered
lateral ideal of T for all a ∈ T \ {0}. Hence M(a) = T for all a ∈ T \ {0}.

(b) Assume that M(a) = T for all a ∈ T \ {0} and let [TTT ] 6= {0}. Now
let M be a nonzero ordered lateral ideal of T and put a ∈ M \ {0}. Then
T = M(a) ⊆ M ⊆ T , so M = T . Therefore T is lateral 0-simple.

Therefore we complete the proof of the lemma. ¤

The next lemma is easy to verify.

Lemma 1.5. Let {Mγ : γ ∈ Γ} be a family of ordered lateral ideals of T. Then⋃
γ∈Γ Mγ is an ordered lateral ideal of T and

⋂
γ∈Γ Mγ is also an ordered lateral

ideal of T if
⋂

γ∈Γ Mγ 6= ∅.
Lemma 1.6. If M is an ordered lateral ideal of T and S is a ternary subsemi-
group of T, then the following statements hold.

(a) If S is lateral simple such that S ∩M 6= ∅, then S ⊆ M .
(b) If S is lateral 0-simple such that S \ {0} ∩M 6= ∅, then S ⊆ M .

Proof. (a) Assume that S is lateral simple such that S ∩ M 6= ∅. Then let
a ∈ S∩M . Since M is an ordered lateral ideal of T , (M ] ⊆ M . By Lemma 1.2,
we have ([SSaSS] ∪ [SaS]] ∩ S is an ordered lateral ideal of S. This implies
that ([SSaSS]∪ [SaS]]∩S = S. Hence S ⊆ ([SSaSS]∪ [SaS]] ⊆ ([TTMTT ]∪
[TMT ]] ⊆ ([TMT ]] ⊆ (M ] ⊆ M , so S ⊆ M .

(b) Assume that S is lateral 0-simple such that S \ {0} ∩M 6= ∅. Then let
a ∈ S \{0}∩M . By Lemmas 1.1 and 1.4(a), we have S = MS(a) = ([SSaSS]∪
[SaS]∪ a]∩S ⊆ ([SSaSS]∪ [SaS]∪ a] ⊆ ([TTaTT ]∪ [TaT ]∪ a] = M(a) ⊆ M .
Therefore S ⊆ M .

Hence the proof of the lemma is completed. ¤

2. (0-)Minimal ordered lateral ideals

For an ordered ternary semigroup T without zero, an ordered lateral ideal M
of T is called a minimal ordered lateral ideal of T if there is no ordered lateral
ideal A of T such that A ⊂ M . Equivalently, if for any ordered lateral ideal A
of T such that A ⊆ M , we have A = M . For an ordered ternary semigroup T
with zero, a nonzero ordered lateral ideal M of T is called a 0-minimal ordered
lateral ideal of T if there is no nonzero ordered lateral ideal A of T such that
A ⊂ M . Equivalently, if for any nonzero ordered lateral ideal A of T such that
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A ⊆ M , we have A = M . Equivalently, if for any ordered lateral ideal A of T
such that A ⊂ M , we have A = {0}.

In this section, we characterize the relationship between the minimal and
0-minimal ordered lateral ideals and the lateral simple and lateral 0-simple or-
dered ternary semigroups.

Theorem 2.1. If T has no zero element and M is an ordered lateral ideal of
T, then the following statements hold.

(a) If M is a minimal ordered lateral ideal of T without zero, then either
there exists an ordered lateral ideal A of M such that [MMAMM ] 6=
[MAM ] or M is lateral simple.

(b) If M is lateral simple, then M is a minimal ordered lateral ideal of T.
(c) If M is a minimal ordered lateral ideal of T with zero, then either there

exists a nonzero ordered lateral ideal A of M such that [MMAMM ] 6=
[MAM ] or M is lateral 0-simple.

Proof. (a) Assume that M is a minimal ordered lateral ideal of T without
zero and [MMAMM ] = [MAM ] for all ordered lateral ideals A of M . Now
let A be an ordered lateral ideal of M . Then [MMAMM ] = [MAM ] ⊆
A ⊆ M . Define H := {h ∈ A : h ≤ [m1am2] for some m1,m2 ∈ M and
a ∈ A}. Then ∅ 6= H ⊆ A ⊆ M . To show that H is an ordered lateral
ideal of T , let t1, t2 ∈ T and h ∈ H. Then h ≤ [m1am2] = [m′

1[m
′
2am′

3]m
′
4]

for some m1,m2,m
′
1,m

′
2,m

′
3,m

′
4 ∈ M and a ∈ A, so [t1ht2] ≤ [t1[m1am2]t2] =

[t1[m′
1[m

′
2am′

3]m
′
4]t2] = [[t1m′

1m
′
2]a[m′

3m
′
4t2]]. Since M is an ordered lateral

ideal of T , we have [t1ht2], [t1m′
1m

′
2], [m

′
3m

′
4t2] ∈ M . Since A is an ordered

lateral ideal of M , we have [[t1m′
1m

′
2]a[m′

3m
′
4t2]], [t1ht2] ∈ A. Hence [t1ht2] ∈

H, so [THT ] ⊆ H. Next let t ∈ T and h ∈ H be such that t ≤ h. Then
h ≤ [m1am2] for some m1,m2 ∈ M and a ∈ A, so t ≤ [m1am2] ∈ [MAM ] ⊆
A ⊆ M . Since M is an ordered lateral ideal of T , we get t ∈ M . Thus t ∈ A
because A is an ordered lateral ideal of M . Hence t ∈ H, so H is an ordered
lateral ideal of T . Since M is a minimal ordered lateral ideal of T , H = M .
Therefore A = M , so we conclude that M is lateral simple.

(b) Assume that M is lateral simple. Let A be an ordered lateral ideal of
T such that A ⊆ M . Then A ∩ M 6= ∅, it follows from Lemma 1.6(a) that
M ⊆ A. Hence A = M , so M is a minimal ordered lateral ideal of T .

(c) It is similar to the proof of statement (a).
Therefore we complete the proof of the theorem. ¤

Using the similar proof of Theorem 2.1(a) and the Lemma 1.6(b), we have
Theorem 2.2.

Theorem 2.2. If T has a zero element and M is a nonzero ordered lateral
ideal of T, then the following statements hold.
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(a) If M is a 0-minimal ordered lateral ideal of T, then either there ex-
ists a nonzero ordered lateral ideal A of M such that [MMAMM ] 6=
[MAM ] = {0} or M is lateral 0-simple.

(b) If M is lateral 0-simple, then M is a 0-minimal ordered lateral ideal of
T.

Theorem 2.3. If T has no zero element but it has proper ordered lateral ideals,
then every proper ordered lateral ideal of T is minimal if and only if T contains
exactly one proper ordered lateral ideal or T contains exactly two proper ordered
lateral ideals M1 and M2, M1 ∪M2 = T and M1 ∩M2 = ∅.
Proof. Assume that every proper ordered lateral ideal of T is minimal. Now
let M be a proper ordered lateral ideal of T . Then M is a minimal ordered
lateral ideal of T . We consider the following two cases:

Case 1: T = M(a) for all a ∈ T \M .

If K is also a proper ordered lateral ideal of T and K 6= M , then K \M 6= ∅
because M is a minimal ordered lateral ideal of T . Thus there exists a ∈
K \M ⊆ T \M . Hence T = M(a) ⊆ K ⊆ T , so K = T . It is impossible, so
K = M . In this case, M is the unique proper ordered lateral ideal of T .

Case 2: There exists a ∈ T \M such that T 6= M(a).

Then M(a) 6= M and M(a) is a minimal ordered lateral ideal of T . By
Lemma 1.5, M(a) ∪ M is an ordered lateral ideal of T . By hypothesis and
M ⊂ M(a)∪M , we get M(a)∪M = T . Since M(a)∩M ⊂ M(a) and M(a) is
a minimal ordered lateral ideal of T , M(a)∩M = ∅. Now let K be an arbitrary
proper ordered lateral ideal of T . Then K is a minimal ordered lateral ideal of
T . We observe that K = K∩T = K∩ (M(a)∪M) = (K∩M(a))∪ (K∩M). If
K ∩M 6= ∅, then K = M because K and M are minimal ordered lateral ideals
of T . If K ∩ M(a) 6= ∅, then K = M(a) because K and M(a) are minimal
ordered lateral ideals of T . In this case, T contains exactly two proper ordered
lateral ideals M and M(a), M(a) ∪M = T and M(a) ∩M = ∅.

The converse is obvious. ¤

Using the same proof of Theorem 2.3, we have Theorem 2.4.

Theorem 2.4. If T has a zero element and nonzero proper ordered lateral
ideals, then every nonzero proper ordered lateral ideal of T is 0-minimal if and
only if T contains exactly one nonzero proper ordered lateral ideal or T contains
exactly two nonzero proper ordered lateral ideals M1 and M2, M1 ∪ M2 = T
and M1 ∩M2 = {0}.

3. Maximal ordered lateral ideals

A proper ordered lateral ideal M of T is called a maximal ordered lateral
ideal of T if for any ordered lateral ideal A of T such that M ⊂ A, we have
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A = T . Equivalently, if for any proper ordered lateral ideal A of T such that
M ⊆ A, we have A = M .

In this section, we characterize the relationship between the maximality of
ordered lateral ideals and the union U of all (nonzero) proper ordered lateral
ideals in ordered ternary semigroups.

Theorem 3.1. If T has no zero element but it has proper ordered lateral ideals,
then every proper ordered lateral ideal of T is maximal if and only if T contains
exactly one proper ordered lateral ideal or T contains exactly two proper ordered
lateral ideals M1 and M2, M1 ∪M2 = T and M1 ∩M2 = ∅.
Proof. Assume that every proper ordered lateral ideal of T is maximal. Now
let M be a proper ordered lateral ideal of T . Then M is a maximal ordered
lateral ideal of T . We consider the following two cases:

Case 1: T = M(a) for all a ∈ T \M .

If K is also a proper ordered lateral ideal of T and K 6= M , then K is a
maximal ordered lateral ideal of T . This implies that K\M 6= ∅, so there exists
a ∈ K \M ⊆ T \M . Thus T = M(a) ⊆ K ⊆ T , so K = T . It is impossible,
so K = M . In this case, M is the unique proper ordered lateral ideal of T .

Case 2: There exists a ∈ T \M such that T 6= M(a).

Then M(a) 6= M and M(a) is a maximal ordered lateral ideal of T . By
Lemma 1.5, M(a) ∪M is an ordered lateral ideal of T . Since M ⊂ M(a) ∪M
and M is a maximal ordered lateral ideal of T , M(a)∪M = T . By hypothesis
and M(a) ∩ M ⊂ M(a), we get M(a) ∩ M = ∅. Now let K be an arbitrary
proper ordered lateral ideal of T . Then K is a maximal ordered lateral ideal of
T . We observe that K = K∩T = K∩ (M(a)∪M) = (K∩M(a))∪ (K∩M). If
K ∩M 6= ∅, then K = M because K ∩M and M are maximal ordered lateral
ideals of T . If K ∩M(a) 6= ∅, then K = M(a) because K ∩M(a) and M(a)
are maximal ordered lateral ideals of T . In this case, T contains exactly two
proper ordered lateral ideals M and M(a), M(a)∪M = T and M(a)∩M = ∅.

The converse is obvious. ¤

Using the same proof of Theorem 3.1, we have Theorem 3.2.

Theorem 3.2. If T has a zero element and nonzero proper ordered lateral
ideals, then every nonzero proper ordered lateral ideal of T is maximal if and
only if T contains exactly one nonzero proper ordered lateral ideal or T contains
exactly two nonzero proper ordered lateral ideals M1 and M2, M1 ∪ M2 = T
and M1 ∩M2 = {0}.
Theorem 3.3. A proper ordered lateral ideal M of T is maximal if and only if

(a) T \M = {a} and ([TaT ]] ⊆ M for some a ∈ T or
(b) T \M ⊆ ([TTaTT ] ∪ [TaT ]] for all a ∈ T \M .
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Proof. Assume that M is a maximal ordered lateral ideal of T . Then we con-
sider the following two cases:

Case 1: There exists a ∈ T \M such that ([TTaTT ] ∪ [TaT ]] ⊆ M .

Then ([TaT ]] ⊆ M . By Lemma 1.1, we have M ∪ (a] = (M ∪ ([TTaTT ] ∪
[TaT ]])∪ (a] = M ∪ (([TTaTT ]∪ [TaT ]]∪ (a]) = M ∪ ([TTaTT ]∪ [TaT ]∪ a] =
M ∪M(a). Thus M ∪ (a] is an ordered lateral ideal of T because M ∪M(a)
is an ordered lateral ideal of T . Since M is a maximal ordered lateral ideal of
T and M ⊂ M ∪ (a], we have M ∪ (a] = T . Hence T \ M ⊆ (a]. To show
that T \ M = {a}, let x ∈ T \ M . Then x ≤ a, so ([TTxTT ] ∪ [TxT ]] ⊆
([TTaTT ] ∪ [TaT ]] ⊆ M . From ([TTxTT ] ∪ [TxT ]] ⊆ M and x ∈ T \ M , a
similar argument shows that T \M ⊆ (x]. Consequently a ≤ x, so x = a. Hence
T \M = {a}. In this case, the condition (a) is satisfied.

Case 2: ([TTaTT ] ∪ [TaT ]] 6⊆ M for all a ∈ T \M .

If a ∈ T \ M , then ([TTaTT ] ∪ [TaT ]] 6⊆ M and ([TTaTT ] ∪ [TaT ]] is
an ordered lateral ideal of T by Lemma 1.2. By Lemma 1.5, we have M ∪
([TTaTT ] ∪ [TaT ]] is an ordered lateral ideal of T and M ⊂ M ∪ ([TTaTT ] ∪
[TaT ]]. Since M is a maximal ordered lateral ideal of T , M ∪ ([TTaTT ] ∪
[TaT ]] = T . Hence we conclude that T \ M ⊆ ([TTaTT ] ∪ [TaT ]] for all
a ∈ T \M . In this case, the condition (b) is satisfied.

Conversely, let J be an ordered lateral ideal of T such that M ⊂ J . Then
J \M 6= ∅. If T \M = {a} and ([TaT ]] ⊆ M for some a ∈ T , then J \M ⊆
T \M = {a}. Thus J \M = {a}, so J = M ∪ a = T . Hence M is a maximal
ordered lateral ideal of T . If T \M ⊆ ([TTaTT ] ∪ [TaT ]] for all a ∈ T \M ,
then T \M ⊆ ([TTxTT ]∪ [TxT ]] ⊆ ([TTJTT ]∪ [TJT ]] ⊆ J for all x ∈ J \M .
Hence T = (T \M)∪M ⊆ J ⊆ T , so J = T . Therefore M is a maximal ordered
lateral ideal of T .

Hence the theorem is now completed. ¤
For an ordered ternary semigroup T , let U denote the union of all nonzero

proper ordered lateral ideals of T if T has a zero element and let U denote the
union of all proper ordered lateral ideals of T if T has no zero element. Then
it is easy to verify Lemma 3.4.

Lemma 3.4. U = T if and only if M(a) 6= T for all a ∈ T .

As a consequence of Theorem 3.3 and Lemma 3.4, we obtain the next two
theorems.

Theorem 3.5. If T has no zero element, then one and only one of the following
four conditions is satisfied.

(a) T is lateral simple.
(b) M(a) 6= T for all a ∈ T .
(c) There exists a ∈ T such that M(a) = T, a 6∈ ([TTaTT ] ∪ [TaT ]] and

([TaT ]] ⊆ U = T \ {a} and U is the unique maximal ordered lateral
ideal of T.
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(d) T \U = {x ∈ T : ([TTxTT ]∪ [TxT ]] = T} and U is the unique maximal
ordered lateral ideal of T.

Proof. Assume that T is not lateral simple. Then there exists a proper ordered
lateral ideal of T , so U is an ordered lateral ideal of T . We consider the following
two cases:

Case 1: U = T .

By Lemma 3.4, we have M(a) 6= T for all a ∈ T . In this case, the condi-
tion (b) is satisfied.

Case 2: U 6= T .

Then U is a maximal ordered lateral ideal of T . Now assume that M is a
maximal ordered lateral ideal of T . Then M ⊆ U ⊂ T because M is a proper
ordered lateral ideal of T . Since M is a maximal ordered lateral ideal of T , we
have M = U . Hence U is the unique maximal ordered lateral ideal of T . By
Theorem 3.3, we get

(i) T \ U = {a} and ([TaT ]] ⊆ U for some a ∈ T or
(ii) T \ U ⊆ ([TTaTT ] ∪ [TaT ]] for all a ∈ T \ U .

Suppose that T \U = {a} and ([TaT ]] ⊆ U for some a ∈ T . Then ([TaT ]] ⊆
U = T \ {a}. Since a 6∈ U , we have M(a) = T . If a ∈ ([TTaTT ] ∪ [TaT ]], then
(a] ⊆ ([TTaTT ] ∪ [TaT ]]. By Lemma 1.1, we have T = M(a) = ([TTaTT ] ∪
[TaT ] ∪ a] = ([TTaTT ] ∪ [TaT ]] ∪ (a] = ([TTaTT ] ∪ [TaT ]] = ([TTaTT ]] ∪
([TaT ]] ⊆ ([TUT ]] ∪ U = U ⊆ T . Thus T = U , so it is impossible. Hence
a 6∈ ([TTaTT ] ∪ [TaT ]]. In this case, the condition (c) is satisfied.

Now suppose that T \ U ⊆ ([TTaTT ] ∪ [TaT ]] for all a ∈ T \ U . To show
that T \ U = {x ∈ T : ([TTxTT ] ∪ [TxT ]] = T}, let x ∈ T \ U . Then
x ∈ ([TTxTT ] ∪ [TxT ]], so (x] ⊆ ([TTxTT ] ∪ [TxT ]]. By Lemma 1.1, we have
M(x) = ([TTxTT ]∪[TxT ]∪x] = ([TTxTT ]∪[TxT ]]∪(x] = ([TTxTT ]∪[TxT ]].
Since x 6∈ U , we have M(x) = T . Hence T = M(x) = ([TTxTT ] ∪ [TxT ]].
Conversely, let x ∈ T be such that ([TTxTT ] ∪ [TxT ]] = T . If x ∈ U , then
M(x) ⊆ U ⊂ T . By Lemma 1.1, we have M(x) = ([TTxTT ] ∪ [TxT ] ∪ x] =
([TTxTT ] ∪ [TxT ]] ∪ (x] = T ∪ (x] = T . It is impossible, so x ∈ T \ U . Hence
we conclude that T \ U = {x ∈ T : ([TTxTT ] ∪ [TxT ]] = T}. In this case, the
condition (d) is satisfied.

Hence the proof of the theorem is completed. ¤

Using the same proof of Theorem 3.5, we have Theorem 3.6.

Theorem 3.6. If T has a zero element and [TTT ] 6= {0}, then one and only
one of the following four conditions is satisfied.

(a) T is lateral 0-simple.
(b) M(a) 6= T for all a ∈ T .



784 AIYARED IAMPAN

(c) There exists a ∈ T such that M(a) = T, a 6∈ ([TTaTT ] ∪ [TaT ]] and
([TaT ]] ⊆ U = T \ {a} and U is the unique maximal ordered lateral
ideal of T.

(d) T \U = {x ∈ T : ([TTxTT ]∪ [TxT ]] = T} and U is the unique maximal
ordered lateral ideal of T.
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