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ON THE STRONG LAW OF LARGE NUMBERS FOR
WEIGHTED SUMS OF ARRAYS OF ROWWISE

NEGATIVELY DEPENDENT RANDOM VARIABLES

Jong-Il Baek, Hye-Young Seo, Gil-Hwan Lee, and Jeong-Yeol Choi

Abstract. Let {Xni | 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise nega-
tively dependent (ND) random variables. We in this paper discuss the
conditions of

Pn
i=1 aniXni → 0 completely as n → ∞ under not neces-

sarily identically distributed setting and the strong law of large numbers
for weighted sums of arrays of rowwise negatively dependent random vari-
ables is also considered.

1. Introduction

Let {Xn |n ≥ 1} be a sequence of random variables. Hsu and Robbins [4]
introduced the concept of complete convergence of {Xn |n ≥ 1}. A sequence
{Xn |n ≥ 1} of random variables converges to a constant c completely if

∞∑
n=1

P (|Xn − c| > ε) < ∞ for all ε > 0.

If Xn → c completely, then the Borel-Cantelli lemma implies that Xn → c
almost surely, but the converse is not true in general.

Let {Xni | 1 ≤ i ≤ n, n ≥ 1} be an array of random variables with
EXni = 0 for all n and i. Many authors studied the complete convergence
of n−1/p

∑n
i=1 Xni which is defined

(1.1)
∞∑

n=1

P

(
|n−1/p

n∑

i=1

Xni| > ε

)
for all ε > 0,

where 0 < p < 2.
In particular, Erdös [4] showed that for an array of independent identically

distributed (i.i.d.) random variables {Xni|1 ≤ i ≤ n, n ≥ 1}, (1.1) holds if
and only if E|X11|2p < ∞. Hu et al. [6] showed that Erdös’ result could be
obtained by replacing the i.i.d. condition by the uniformly bounded condition.
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We recall that any away {Xni|1 ≤ i ≤ n, n ≥ 1} of random variables is said to
be uniformly bounded by a random variable X if for all i, n and x ≥ 0,

(1.2) sup P (|Xni| ≥ x) ≤ P (|X| > x).

Hu et al. [5] had obtained the following result in complete convergence and
they had established (1.3) for non identcally random variable when no assump-
tion of independence between rows of the array is made.

Theorem A. Let {Xni | 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent
random variables with EXni = 0. Suppose that {Xni | 1 ≤ i ≤ n, n ≥ 1}
are uniformly bounded by some random variable X. If E|X|2p < ∞ for some
1 ≤ p ≤ 2, then

(1.3) n−1/p
n∑

i=1

Xni −→ 0 completely as n →∞

if and only if E|X11|2p < ∞.

In this paper, we discuss the strong law of large numbers for weighted sums
of arrays of rowwise ND random variables. The main purpose of this paper is
to extend and generalize Theorem A to rowwise ND random variables which
satisfy suitable conditions. Further, the last two properties of this paper show
that neither ND nor EXni = 0 are needed to obtain the corresponding strong
law of large numbers when 0 < p < 1/2 or a weak law of large numbers when
1/2 ≤ p < 1.

2. Preliminaries

This section will list some background materials which will be used in ob-
taining the main results in the next section and we define a+ = max(0, a),
a− = max(0,−a).

Definition 2.1 (Ebrahimi et al. [2]). Random variables X and Y are nega-
tively dependent(ND) if

(2.1) P [X ≤ x, Y ≤ y] ≤ P [X ≤ x]P [Y ≤ y]

for all x, y ∈ R. A collection of random variables is said to be pairwise ND if
every pair of random variables in the collection satisfies (2.1).

It is important to note that Definition 2.1 implies

(2.2) P [X > x, Y > y] ≤ P [X > x]P [Y > y]

for the x, y ∈ R. Moreover, it follows that (2.2) implies (2.1), and hence, they
are equivalent for pairwise ND. Ebrahimi and Ghosh [2] showed that (2.1)
and (2.2) are not equivalent for n ≥ 3. Consequently, the following definition
is needed to define sequences of negatively dependent random variables.

Definition 2.2. The random variables X1, X2, . . . are said to be
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(a) lower negatively dependent(LND) if for each n,

(2.3) P [X1 ≤ x1, . . . , Xn ≤ xn] ≤
n∏

i=1

P [Xi ≤ xi]

for all x1, . . . , xn ∈ R,
(b) upper negatively dependent(UND) if for each n,

(2.4) P [X1 > x1, . . . , Xn > xn] ≤
n∏

i=1

P [Xi > xi]

for all x1, . . . , xn ∈ R,
(c) negatively dependent (ND) if both (2.3) and (2.4) hold.

The following properties are listed for reference in obtaining the main result
in the next section and detailed proofs can be found in their paper.

Lemma 2.1 (Ebrahimi et al. [2]). Let {Xn | n ≥ 1} be a sequence of ND
random variables and {fn | n ≥ 1} be a sequence of monotone increasing
(decreasing) Borel functions. Then {fn(Xn) | n ≥ 1} is a sequence of ND
random variables.

Lemma 2.2 (Taylor et al. [7]). (a) Let X1, X2, . . . , Xn be nonnegative random
variables which are upper negatively dependent. Then

E

(
n∏

i=1

Xi

)
≤

n∏

i=1

EXi.

(b) Let X1, X2, . . . , Xn be a pairwise ND random variables. Then

(i) EXiXj ≤ EXiEXj for i 6= j

(ii) Cov(Xi, Xj) ≤ 0 for i 6= j.

(c) Let X1, X2, . . . , Xn be a ND random variables. Then for any real num-
bers {a1, . . . , an} and {b1, . . . , bn} such that ai ≤ bi , 1 ≤ i ≤ n, Yi = XiI (ai ≤
Xi ≤ bi) + biI(Xi > bi) + aiI(Xi < ai) are ND random variables.

Lemma 2.3 (Hu et al. [6]). For any r ≥ 1 and p > 0,
(a) E|X|r if and only if

∞∑
n=1

nr−1P (|X| > εn) < ∞ for all ε > 0,

(b) E|X|rI(|X| ≤ n1/p) ≤ r

∫ n1/p

0

tr−1P (|X| > t)dt,

(c) r2−r

∞∑
n=1

nr−1P (|X| > n) ≤ E|X|r ≤ 1 + r2r
∞∑

n=1

nr−1P (|X| > n).
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Lemma 2.4 (Bozorgnia et al. [1]). Let X be a random variable such that
EX = 0 and |X| ≤ M < a.e. Then for all constant M,

1 ≤ Eetx ≤ et2EX2
for all |t| ≤ 1

M
.

3. Strong law of large numbers for weighted sums

Theorem 3.1 is to extend and generalize Theorem A to rowwise ND random
variables. Note that the range 0 < p < 2 is allowed in Theorem 3.1 and
Theorem 3.2 whereas previous results usually addressed the important subset
1 ≤ p ≤ 2. Throughout the proof c will represent positive constants whose
value may change from one to another.

Theorem 3.1. Suppose that 0 < p < 2 and let {Xni | 1 ≤ i ≤ n, n ≥ 1}
be an array of rowwise ND random variables with EXni = 0. Suppose that
supP (|Xni| > x) ≤ P (|X| > x) for all i, n and x ≥ 0. Assume that {ani | 1 ≤
i ≤ n, n ≥ 1} is an array of real numbers satisfying

(i) max
1≤x≤n

|ani| = O(n−1/p), (ii)
n∑

i=1

a2
ni = o

(
1

log n

)
.

If E|X|2p < ∞, then
n∑

i=1

aniXni −→ 0 completely as n →∞.

Proof. Since ani = a+
ni − a−ai, it suffices to show that

(1)
∞∑

n=1

P

(∣∣∣∣∣
n∑

i=1

a+
niXni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0,

(2)
∞∑

n=1

P

(∣∣∣∣∣
n∑

i=1

a−niXni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0.

We prove only (1), the proof of (2) is analogous.
To prove (1), we need only prove that

(3)
∞∑

n=1

P

(
n∑

i=1

a+
niXni > ε

)
< ∞ for all ε > 0,

(4)
∞∑

n=1

P

(
n∑

i=1

a+
niXni < −ε

)
< ∞ for all ε > 0.

Without loss of generality, we can assume that 0 < a+
ni ≤ n−1/p for all 1 ≤

i ≤ n, n ≥ 1 and let q be the constant such that 0 < p < q < 2p < 2 and for
α > 0, α = 1/p− 1/q.
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Note that
(

n∑

i=1

a+
niXni ≥ ε

)
⊂

(
n∑

i=1

a+
niXniI(|Xni| ≤ n1/q) ≥ ε/2

)

⋃
(a+

niXni ≥ ε/2 for some i, 1 ≤ i ≤ n)
⋃

(Xni > n1/q for at least two values of i, 1 ≤ i ≤ n).

Thus,

(5)

∞∑
n=1

P

(
n∑

i=1

ani
+Xni ≥ ε

)

≤
∞∑

n=1

P

(
n∑

i=1

ani
+XniI(|Xni| ≤ n1/q) ≥ ε/2

)

+
∞∑

n=1

P (ani
+Xni ≥ ε/2 for some i, 1 ≤ i ≤ n)

+
∞∑

n=1

P (Xni > n1/q for at least two values of i, 1 ≤ i ≤ n)

= I1 + I2 + I3(say).

To prove I1 < ∞, we first define that

Yni = XniI(|Xni| ≤ n1/q) + n1/qI(Xni > n1/q)− n1/qI(Xni < −n1/q).

So that {Yni|1 ≤ i ≤ n, n ≥ 1} is still an array of rowwise ND random variables
by definition.

Next,

(6)

n∑

i=1

ani
+XniI(|Xni| ≤ n1/q)

=
n∑

i=1

ani
+(Yni − EYni)

− n1/q
n∑

n=1

ani
+(I(Xni > n1/q)− P (Xni > n1/q))

+ n1/q
n∑

n=1

ani
+(I(Xni < −n1/q)− P (Xni < −n1/q))

+
n∑

i=1

ani
+EXniI(|Xni| ≤ n1/q)

= I4 + I5 + I6 + I7 (say).
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As to I4, we consider two cases of (a) p ≥ 1 and (b) 0 < p < 1, and note that
{ani

+(Yni −EYni) | 1 ≤ i ≤ n, n ≥ 1} is still an array of rowwise ND random
variables by definition and |ani

+(Yni − EYni)| ≤ 2n−1/p + 1/q = 2n−α.
(a) when p ≥ 1, note that

E|Yni|2 ≤ E|Xni|2I(|Xni| ≤ n1/q) + n2/qP (|Xni| > n1/q)

≤ E|X|2I(|X| ≤ n1/q) + n2/qP (|X| > n1/q)
≤ 2E|X|2 < ∞

which implies that E|Yni|2 < ∞ since E|X|2p < ∞ implies E|X|2 < ∞. Hence,
by using Lemma 2.2 and Lemma 2.4 and taking t = 2 log n/ε, we get

I4 = P

(
n∑

i=1

ani
+(Yni − EYni) > ε

)

≤ e−εt
Qn

i=1 Eetani
+(Yni−EYni)

≤ e−2 log n
Qn

i=1 etani
+(Yni−EYni)

≤ e−2 log n
Qn

i=1 et2(ani
+)2EYni

2

≤ e−2 log n
Qn

i=1 ect2(ani
+)2E|X|2

≤ e−2 log nec(log n)2
Pn

i=1(ani
+)2

≤ e−2 log nec(log n)2·( 1
log n )

≤ ce−c log n −→ 0 as n →∞.

Hence,
∞∑

n=1

P

(
n∑

i=1

ani
+(Yni − EYni) > ε

)
< ∞.

(b) when 0 < p < 1, taking t = nα/2, we get

I4 = P

(
n∑

i=1

ani
+(Yni − EYni) > ε

)

≤ e−εtet2
Pn

i=1(ani
+)2EY 2

ni

≤ e−εtecn2αPn
i=1 n−2/pEXni

2I(|Xni|≤n1/q)+n2/qP (|Xni|>n1/q)

≤ e−εtecn(2/p−2/q)n1−2/pc(1+n2(1−p)/q)

≤ e−cnα

ecn1−2/q+1−2p/q

which is summable since α > 0 and 0 < p < q < 2p < 2 implies that 1−2/q < 0
and 1− 2p/q < 0. Hence, by (a) and (b), for all 0 < p < 2,

(7)
∞∑

n=1

P

(
n∑

i=1

ani
+(Yni − EYni) > ε

)
< ∞.
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As to I5, let Zni = n1/qani
+(I(Xni > n1/q)−P (Xni > n1/q)) and noticing that

|Zni| = |n1/qani
+(I(Xni > n1/q)− P (Xni > n1/q))| ≤ n1/q−1/p ≤ n−α and

EZni
2 ≤ n2/q(ani

+)2P (Xni > n1/q) + P (Xni > n1/q)

≤ cn2/qn−2/pE|X|2p/n2p/q,

we get that

I5 = P

(
n∑

i=1

Zni > ε

)

= P

(
nα

n∑

i=1

Zni > nαε

)

≤ e−εnα

EenαPn
i=1 Zni

≤ e−εnα
n∏

i=1

en2αE(Zni)
2

≤ e−εnα
n∏

i=1

en(2/p−2/q)cn2/q−2/pE|X|2p/n2p/q

≤ e−εnα

ecn(1−2p/q)

≤ e−εnα+cn1−2p/q

which is summable since α > 0 and 1− 2p/q < 0. Hence,

(8)
∞∑

n=1

P

(
n1/q

n∑

i=1

ani
+(I(Xni > n1/q)− P (Xni > n1/q)) > ε

)
< ∞.

(9) As to I6, the proof of I6 is similar to I5.

Next, as to I7, we consider three cases of (c) p > 1/2, (d) p = 1/2, and (e)
0 < p < 1/2. Since EXni = 0, it follows that

EXniI(|Xni| ≤ n1/q) = | − EXniI(|Xni| > n1/q)|.
(c) when p > 1/2,

|I7| ≤
n∑

i=1

|ani
+EXniI(|Xni| ≤ n1/q)|

≤
n∑

i=1

n−1/pE|Xni|I(|Xni| > n1/q)

≤
n∑

i=1

n−1/p(n1/qP (|Xni| > n1/q) +
∫ ∞

n1/q

P (|Xni| > t)dt)

≤ n1−1/p+1/qP (|X| > n1/q) + n1−1/p

∫ ∞

n1/q

P (|X| > t)dt
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≤ n1−1/p+1/q−2p/qE|X|2p + n1−1/p+1/q−2p/qE|X|2p

≤ cn1−1/p+1/q(1−2p)

which implies that
n∑

i=1

ani
+EXniI(|Xni| ≤ n1/q) −→ 0 as n →∞

since 1− 1/p + 1/q(1− 2p) < 0.
(d) when p = 1/2,

|I7| ≤
n∑

i=1

|ani
+EXniI(|Xni| ≤ n1/q)|

≤
n∑

i=1

n−1/pE|X|I(|X| ≤ n1/q)

≤ n1−1/pE|X| −→ 0 as n →∞.

(e) when 0 < p < 1/2, note that E|X|2p < ∞ implies that P (|X| > t) ≤ t−2t,
where t ≥ A for some constant A. Hence, for n1/q ≥ A,

|I7| ≤
n∑

i=1

|ani
+EXniI(|Xni| ≤ n1/q)|

≤
n∑

i=1

n−1/pE|Xni|I(|Xni| ≤ n1/q)

≤ n1−1/pE|X|I(|X| ≤ n1/q)

≤ n1−1/p

∫ n1/q

0

P (|X| > t)dt

= n1−1/p

(∫ A

0

P (|X| > t)dt +
∫ n1/q

A

P (|X| > t)dt

)

≤ n1−1/p

(
A +

∫ n1/q

A

P (|X| > t)dt

)

≤ n1−1/p

(
A +

1
1− 2p

n1/q(1−2p)

)

≤ c
1

1− 2p
n1−1/p + 1/q(1−2p)

which implies that
n∑

i=1

ani
+EXniI(|Xni| ≤ n1/q) −→ 0 as n →∞
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since 1/q(1− 2p) < 0 and 1− 1/p < 0. Hence, by (c), (d), and (e), we get

(10)
∞∑

n=1

P

(
n∑

i=1

ani
+EXniI(|Xni| ≤ n1/q)

)
< ∞.

Thus, by (7), (8), (9), and (10), we have

(11) I1 =
∞∑

n=1

P (
n∑

i=1

ani
+XniI(|Xni| ≤ n1/q) ≥ ε/2) < ∞.

As to I2, we get that

P (ani
+Xni ≥ ε/2 for some i, 1 ≤ i ≤ n)

≤ P

(
n⋃

i=1

|ani
+Xni| > ε/2

)

≤
n∑

i=1

P (|ani
+Xni| > ε/2)

≤
n∑

i=1

P (n−1/p|Xni| > ε/2)

≤
n∑

i=1

P (|X| > n1/pε/2)

≤ n−1

(
2
ε

)2p

E|X|2p

which implies that

n−1E|X|2p −→ 0 as n →∞.

Hence,

(12) I2 =
∞∑

n=1

P (ani
+Xni ≥ ε/2 for some i, 1 ≤ i ≤ n) < ∞.

Finally, we get that

P (Xni > n1/q for at least two values of 1 ≤ i ≤ n)

≤ P


⋃

i6=j

Xni > n1/q, Xnj > n1/q




≤
∑

i 6=j

P (|Xni| > n1/q, |Xnj | > n1/q)

≤
∑

i 6=j

P (|X| > n1/q)P (|X| > n1/q)
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≤
∑

i 6=j

E|X|2p(n−1/q)2pE|X|2p(n−1/q)2p

≤ cn(n− 1)n−4q/p

≤ cn−2(2p/q−1)

which implies that

n−2(2p/q−1) −→ 0 as n →∞
since 2p/q − 1 > 0. Hence,

(13) I3 =
∞∑

n=1

P (Xni > n1/q for at least two values of i, 1 ≤ i ≤ n) < ∞.

Thus, by (11), (12), and (13), we have
∞∑

n=1

P

(∣∣∣∣∣
n∑

i=1

a+
niXni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0.

By replacing Xni by (−Xni) from (3) and noticing {a+
ni(−Xni) | 1 ≤ i ≤ n,

n ≥ 1} is still an array of rowwise ND random variables by definition, we also
know that

∞∑
n=1

P

(
n∑

n=1

a+
ni(−Xni) > ε

)
< ∞ for all ε > 0.

The proof is complete. ¤

Corollary 3.1. Let 0 < p < 2 and let {Xni | 1 ≤ i ≤ n, n ≥ 1} be an array
of rowwise ND random variables with EXni = 0. Suppose that there is a
random variables X such that sup P (|Xni| > x) ≤ P (|X| > x) for all i, n and
x ≥ 0. Assume that {bni|1 ≤ i ≤ n, n > 1|} is an array of constants satisfying
limn→∞ sup

∑n
i=1 b2

ni < ∞. If E|X|2p < ∞, then
n∑

i=1

bniXni/ log n −→ 0 completely as n →∞.

Proof. Let ani = bni/ log n. Then we can obtain the result by Theorem 3.1.
The proof is complete. ¤

Theorem 3.2. Let 0 < p < 2 and let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of
rowwise ND random variables with EXni = 0. Assume that {ani | 1 ≤ i ≤
n, n ≥ 1} is an array of real numbers satisfying max1≤i≤n |ani| = O(n−1/p).

If |Xni| ≤ M , then
n∑

i=1

aniXni −→ 0 completely as n →∞.
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Proof. Without loss of generality, we assume that

0 < a+
ni ≤ n−1/p for 1 ≤ i ≤ n, n ≥ 1.

As for the proof of Theorem 3.1, it suffices to show that
∞∑

n=1

P

(
n∑

i=1

a+
niXni > ε

)
< ∞ for all ε > 0.

We also know that {a+
niXni | 1 ≤ i ≤ n, n ≥ 1} is still an array of rowwise

ND random variables by definition and |a+
niXni| ≤ n−1/pM and Ea+

niXni = 0.
Hence,

∞∑
n=1

P

(
n∑

i=1

a+
niXni > ε

)

=
∞∑

n=1

P

(
eεn1/p−1/2/M

n∑

i=1

a+
niXni > eε2n1/p−1/2/M

)

≤
∞∑

n=1

e−ε2n1/p−1/2/M
n∏

i=1

Eeεn1/p−1/2/M (a+
niXni)

≤
∞∑

n=1

e−ε2n1/p−1/2/M
n∏

i=1

e(εn1/p−1/2/M)2(a+
ni)

2E(Xni)2

≤ c

∞∑
n=1

e−ε2n1/p−1/2/M
n∏

i=1

eε2/n

≤ c

∞∑
n=1

e−ε2n1/p−1/2/M < ∞

since 0 < p < 2 and 1/p− 1/2 > 0. The proof is complete. ¤

Proposition 3.1. Let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise random
variables. Suppose that there is a random variable X such that sup P (|Xni| >
x) ≤ P (|X| > x) for all i, n and x ≥ 0 and let E|X|2p < ∞ for some 0 < p < 1.
Assume that {ani|1 ≤ i ≤ n, n ≥ 1} is an array of real numbers satisfying
max

1≤i≤n
|ani| = O(n−1/p) for some 0 < p < 1/2. If 0 < p < 1/2, then

n∑

i=1

aniXni −→ 0 completely as n →∞.

Proof. Without loss of generality, we assume that 0 < a+
ni ≤ n−1/p for some

0 < p < 1/2 and 1 ≤ i ≤ n, n ≥ 1. As for the proof of Theorem 3.1, it suffices
to show that

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

a+
niXni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0.
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Then,

P

(∣∣∣∣∣
n∑

i=1

a+
niXni

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣
n∑

i=1

a+
niXniI(|Xni| ≤ n1/p)

∣∣∣∣∣ > ε/2

)

+P

(∣∣∣∣∣
n∑

i=1

a+
niXniI(|Xni| > n1/p)

∣∣∣∣∣ > ε/2

)

= I8 + I9 (say).

As to I8,

I8 = P

(∣∣∣∣∣
n∑

i=1

a+
niXniI(|Xni| ≤ n1/p)

∣∣∣∣∣ > ε/2

)

≤ 2/ε E

∣∣∣∣∣
n∑

i=1

a+
niXniI(|Xni| ≤ n1/p)

∣∣∣∣∣

≤ 2/ε n−1/p
n∑

i=1

E|X|I(|X| ≤ n1/p)

≤ cn1−1/p

∫ n1/p

0

P (|X| > t)dt taking t = n1/pr

= cn

∫ 1

0

P (|X| > n1/pr)dr

≤ cn−1E|X|2p

∫ 1

0

r−2pdr

which implies that

(14) n−1E|X|2p

∫ 1

0

r−2pdr −→ 0 as n →∞

since 0 < p < 1/2. As to I9,

I9 = P

(∣∣∣∣∣
n∑

i=1

a+
niXniI(|Xni| > n1/p)

∣∣∣∣∣ > ε/2

)

≤ P

(
n∑

i=1

n−1/p|XniI(|Xni| > n1/p|) > ε/2

)

≤ P

(
n⋃

i=1

|Xni| > n1/p

)
(15)
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≤
n∑

i=1

P (|Xni| > n1/p)

≤ nP (|X|p > n)

≤ n−1E|X|2p −→ 0 as n →∞.

Hence, by (14) and (15),
∑∞

n=1 P (|∑n
i=1 a+

niXni| > ε) < ∞ for all ε > 0. The
proof is complete. ¤

Proposition 3.2. Let {Xni|1 ≤ i ≤ n, n ≥ 1} be an array of rowwise random
variables. Suppose that there is a random variable X such that sup P (|Xni| >
x) ≤ P (|X| > x) for all i, n and x ≥ 0 and let E|X|2p < ∞ for some 0 < p < 1.
Assume that {ani|1 ≤ i ≤ n, n ≥ 1} is an array of real numbers satisfying
max

1≤i≤n
|ani| = O(n−1/p) for some 1/2 ≤ p < 1. If 1/2 ≤ p < 1, then

n∑

i=1

aniXni −→ 0 in probability.

Proof. It suffices to show that
n∑

i=1

E|aniXni| → 0

which implies the weak law of large numbers. By sup P (|Xni| > x) ≤ P (|X| >
x), note that p ≥ 1/2 yield sup E|Xni| < E|X| < ∞. Hence,

n∑

i=1

E|aniXni| ≤
n∑

i=1

n−1/pE|Xni| ≤ n1−1/pE|X| −→ 0 as n →∞

since 1/2 ≤ p < 1. Hence
∑n

i=1 E|aniXni| → 0. The proof is complete. ¤
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