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STRUCTURES OF GEOMETRIC QUOTIENT ORBIFOLDS OF
THREE-DIMENSIONAL G-MANIFOLDS OF GENUS TWO

JUNGSOO Kim

ABSTRACT. In this article, we will characterize structures of geometric
quotient orbifolds of G-manifold of genus two where G is a finite group
of orientation preserving diffeomorphisms using the idea of handlebody
orbifolds. By using the characterization, we will deduce the candidates of
possible non-hyperbolic geometric quotient orbifolds case by case using
W. Dunbar’s work. In addition, if the G-manifold is compact, closed and
the quotient orbifold’s geometry is hyperbolic then we can show that the
fundamental group of the quotient orbifold cannot be in the class D.

1. Introduction

Let M be a closed 3-manifold with a Heegaard splitting of genus two and G
be a finite group of orientation preserving diffeomorphisms acting on M, which
preserves each handlebody of the Heegaard splitting. How can we determine
the possible quotient orbifolds?

Since the G-action preserves each handlebody of the given Heegaard split-
ting, if we can describe the shape of the quotient of each handlebody by the
G-action, then the quotient orbifold can be considered as a sum of two quo-
tients of the handlebodies of the given Heegaard splitting. In [5], McCullough,
Miller, and Zimmermann developed a deep theory which describes how finite
groups act on handlebodies and how the quotient orbifolds, i.e., handlebody
orbifolds, can be constructed.

In this article, we will characterize structures of quotient orbifolds of G-
manifolds of genus two using the idea of handlebody orbifolds. By using the
characterization, we will deduce the candidates of possible non-hyperbolic geo-
metric quotient orbifolds case by case using W. Dunbar’s work. In addition, if
the G-manifold is compact, closed and the quotient orbifold’s geometry is hy-
perbolic then we can show that the fundamental group of the quotient orbifold
cannot be in the class D, defined in Section 4.
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In the theory of handlebody orbifolds, a graph of groups which satisfies cer-
tain conditions corresponds to a handlebody orbifold. At first, we will deduce
all the possible G-admissible graphs of groups case by case as in the following
lemma.

Lemma 2.9. Let G be a finite group of orientation-preserving diffeomorphisms

of the genus two handlebody. Then all the possible G-admissible graphs (T',G)

in standard form are as follows.
(1) FOT’G§ZQ, (ZQ, ) (

) FO7’G%ZS; (Z371723)

) FOT’GgZ4, (Z4,1 Zg)

) FOT’GgZG, (2371 Zg)

) FOT’GgDQ, (ZQ,L]D)Q), F(DQ,Q) and F(DQ,Q,DQ,Q,DQ).

) FO’/‘Gng, (Z271,Z3) and F(D3,2,D3).

) FOTG%DLI’ (DQ,2,D4).

( ) FOTGgD(;, F(D2,2,D3).

In [5], there is a description of a method to construct a handlebody orbifold

from a graph of groups which satisfies certain conditions. Using this, we obtain
the following corollary.

ZQ7 17 (Z27 )) and F(ZQa 1) ZQa 17 ZQ)

Corollary 2.10. The handlebody orbifold quotients of G-actions on the genus
two handlebody are exactly those given in Figure 2.

Using Lemma 2.9 and Corollary 2.10, we may deduce the following theorem
which describes how the quotient orbifold can be constructed.

Theorem 3.3 (Main Theorem). Suppose that M is a closed G-manifold of
genus 2 with Heegaard decomposition (M : Vi, Va). Then the quotient orbifold is
the sum of two handlebody orbifolds, where the two corresponding G-admissible
graphs of handlebody orbifolds are the same type except in the following cases.

(1) O is a union of two handlebody orbifolds where one handlebody orbifold
is modeled on T'(Z2,1) and the other handlebody orbifold is modeled on
F(ZQa 13 (ZQa 2))

(2) O is a union of two handlebody orbifolds where one handlebody orbifold
is modeled on T'(Zs,1,D3) and the other handlebody orbifold is modeled
on F(DQ, 2, ]D)Q, 2, ]D)Q)

(3) O is a union of two handlebody orbifolds where one handlebody orbifold
is modeled on T'(Za,1,Z3) and the other handlebody orbifold is modeled
on F(Dg, 2, ]D)g)

In Lemma 4.2, we will see that the underlying spaces of the quotient orbifolds
are S3, except in a few cases. In [2], Dunbar classified all the non-hyperbolic
geometric closed orbifolds whose underlying spaces are S?, and gave explicit
descriptions of figures. Theorem 3.3 enables us to determine the singular locus
of each quotient orbifold. In Section 4, we use this information together with
Dunbar’s list of orbifolds to work out the possible candidates for nonhyperbolic
geometric quotients.
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FI1GURE 1. The quotients of the 3-ball by spherical groups

In [3], Klimenko and Kopteva classified all the Kleinian orbifolds whose
orbifold fundamental groups are contained in the class D. In particular, they
listed the explicit descriptions of figures of those orbifolds and determined the
exact conditions for the cases of compact orbifolds. By using Theorem 3.3, we
may restrict the singular locus of each quotient orbifold. So by checking all
the possible cases of Theorem 3.3 using the figures of Klimenko and Kopteva
and the conditions for the cases of compact orbifolds, we may deduce that
no fundamental group of a quotient orbifold is contained in the class D (see
Theorems 5.5-5.9).

Acknowledgement. I would like to thank to Darryl McCullough for pointing
out one missing case of Lemma 2.9 and for thoughtful advice on polishing my

paper.

2. Handlebody orbifolds

Let G be a finite group of orientation preserving diffeomorphisms acting on
a handlebody V. Let D be a 2-dimensional properly embedded disk in V' such
that 90D = D N JV is a nontrivial closed curve on V. By the equivariant
loop theorem and equivariant Dehn’s lemma (see [6]), we may assume that
(D) =D or x(D)ND = { for all z € G. When cutting V along the system
of disjoint disks G(D), that is, removing the interior of a G-invariant regular
neighborhood of G(D) (which is a collection of 1-handles: products of a 2-
disk with an interval), we get again a collection of handlebodies of lower genus
where G acts. Applying inductively the above procedure of cutting along disks,
we finally end up with a collection of disjoint 3-balls where G acts. Thus the
quotient orbifold H := V/G is built up from orbifolds that are quotients of 3-
balls by finite group of homeomorphisms (their stabilizers in G), connected by
finite cyclic quotients of 1-handles (1-handle orbifolds) which are the projection
of the removed regular neighborhoods of the disks (the first type of orbifold in
Figure 1).

The finite groups that can act preserving orientation on the 3-ball or the
2-sphere are the finite subgroups of the orthogonal group SO(3): cyclic Z,,
dihedral D,,, tetrahedral A4, octahedral S, and dodecahedral A5, which we will
call the spherical groups. The possible quotient orbifolds from 3-balls are listed
in Figure 1;
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Definition 2.1 ([9]). A handlebody orbifold consists of finitely many orbifolds
as in Figure 1 (i.e., quotients of finite orthogonal group actions on the 3-ball)
connected by 1-handle orbifolds respecting the singular axes and their orders,
and such that topologically the outcome is an orientable handlebody.

By Definition 2.1, the singular locus in the handlebody orbifold is a trivalent
graph.

In general, we can say that the quotient orbifold V/G is a handlebody orb-
ifold by the following proposition.

Proposition 2.2 ([9, Proposition 1]). The quotients of handlebodies by finite
group actions are the handlebody orbifolds.

The concept of G-admissible graph of groups is the key idea to classify the
finite group actions on handlebodies. To define it, we need to introduce the
concept of graph of groups. See details in [8].

Consider a finite graph of finite groups (T, G).

Definition 2.3 ([7]). If G is a finite group then a homomorphism p : 71 (", G) —
G is said to be finite-injective provided that p is one-to-one on each finite sub-
group of 71 (T, G); equivalently, p is injective on each vertex group of w1 (T, G).

In [5] a set of normalized conditions for a graph of groups is given which is
used to study group actions on handlebodies.

Definition 2.4 ([7]). A graph of groups (I',G) is called G-admissible if it
satisfies the normalized conditions and there is a finite-injective epimorphism
from m (T',G) to G.

Definition 2.5 ([7]). The Euler characteristic of a graph of groups (I',G) is

defined as follows. . )
x(I',g) = DBt
E:WA E:WA
where G, is the vertex group of vertex v, and G, is the edge group of edge e
in (T, G).

Proposition 2.6 ([5, Theorem 6.1]). Let G be a finite group. There is an
orientation-preserving effective G-action on the handlebody V, of genus g if
and only if there is a G-admissible graph of groups (I',G) such that

9=1-1G|x(T,9).

By Propositions 2.2 and 2.6, we can say that a G-admissible graph of groups
(T, G) whose Euler characteristic satisfies the equation g = 1 — |G|x(T', G) real-
izes a handlebody orbifold.

Proposition 2.7 ([5, Theorem 7.2]). Let G be a finite group of orientation-
preserving diffeomorphisms of the orientable 3-dimensional handlebody of genus
g > 2. Then the order of G is less than or equal to 12(g — 1).
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By Proposition 2.6, if g = 2, then
X(Fvg) = 71/|G‘7
and by Proposition 2.7, if |G| > 2, then

1
2 <\ (,6) < ——.
5 S xX(1,9) < =5
Proposition 2.8 ([5, Theorem 8.2(b)]). The finite groups which act on Va are
the subgroups of D4 and Dg up to isomorphism.

By Proposition 2.8, the possible finite groups which act on V5 are cyclic
groups of order 2, 3, 4, 6 and dihedral groups of orders 4, 6, 8, 12. Therefore
the possible Euler characteristics of G-admissible graphs of groups (I, G) are
1 1 _1 _1 _1.79-L

2) 73 716 8 12

The construction of the handlebody orbifold V(T', G) from a graph of groups
(T, G) is described on pp. 389-390 of [5]. From section 3 of [5], we have

TP (V(, ) = m (T, G).

We will use the notations I'(A,n, B), T'(A,m, B,n,C), I'(4,n) and T'(4, 1,
(B,n)) to denote the graphs of groups whose fundamental groups are isomor-
phic to Axg, B, Axz, Bxg, C, Axz, and Ax (Bxgz,).

Lemma 2.9. Let G be a finite group of orientation-preserving diffeomorphisms
of the genus two handlebody. Then all the possible G-admissible graphs (T',G)
in standard form are as follows:

(1) FOTG ZQ, (ZQ, ) (Z2717(Z27 )) and F(ZQ,I,ZQ,I,ZQ).
) FOT’G Zg, (Zg,]. Zg)
) FOTG Z4, (Z4,1 Zg)
) FOT’G Z(;, <Z3,17Z2)
) FO’I"G Dg, (ZQ,L]D)Q B F(DQ,Q) and F(DQ,Z,DQ,Q,DQ).
) FOT’G ]D)g,, (2271723 and F(D3,2,D3).
) For G =Dy, I'(
) I(
)

)

)

Dy,2,Dy).
For G = Dg, )

Dy, 2,D3).

Proof. In cases (2), (3) and (4), use the table in the proof of Theorem 7.3(c)
in [5].

In cases (5), (6), (7) and (8) we can see that |G| > 4, so the possible Euler
characteristics of G-admissible graphs (I', G) are greater than or equal to —%.
We will use Chart B from p. 401 of [5], which lists all the graphs (T',G) in

standard form which satisfy the normalized conditions with —i < x(I,g) <

1
-,

In case (5), there are 12 G-admissible graphs of Euler Characteristic —1 in
Chart B in p. 401 of [5] But F(ZQ, 1,Z4), F(Dg, 2,D6), F(D3,2,A4), F(]D)4,2,
D4)a F(S47 3a 84)3 F(A47 3)7 F(D?n 3a A47 37 D3)7 F(D?)a 37 S47 47 ]D)4) and F(]D)37 3a S5a
5,D5) are impossible since some vertex group of each graph has some element

of order larger than 2, so this element cannot be an injective image in Dy. In



864 JUNGSOO KIM

particular, we do not consider T'(Dg, 2, Dy, k, D) with & > 2 since the edge
group Zj, realizes a 1-handle with its core of index k > 2 in the corresponding
handlebody orbifold, but this is impossible for a Dy-action.

In case (6), there are 7 G-admissible graphs of Euler Characteristic —% in
Chart B in p. 401 of [5] But F(]D)Q, 2, ]D)G); F(]DQ, 2, 1&4)7 F(A47 3, A4), F(S4, 4, 84)
and T'(Aj, 5, As) are impossible since some vertex group of each graph has order

larger than 6 = |G| = |Ds|, so this vertex group cannot be an injective image
in G. Case (7) is similar.
In case (8), there are 4 G-admissible graphs of Euler Characteristic —% in

Chart B in p. 401 of [5]. But I'(Dy,4,S4) and I'(Ds, 5, A5) are impossible since
some vertex group of each graph has order larger than 12 = |G| where G 2 Dg,
so this vertex group cannot be an injective image in G. T'(D3,3,A,) is also
impossible since |A4] = |G| but A4 does not embed in G = Dg.

Now we consider case (1).

Suppose that (I, G) has only one vertex. If there is an edge with trivial edge
group, then since x(T',G) = —%, it is the only edge, and we have I'(Zo,1). If
no edge has trivial edge group, then since x (I, G) = f%, there must be exactly
two Zo-edges attached to the vertex, but then the graph cannot be the singular
set of a 3-orbifold.

Suppose now that (I', G) has two vertices. Necessarily they are connected by
a trivial edge, and there must be one more Zs-edge to produce x(I',G) = —3.
Since the graph is in standard form, both ends of the Zs-edge are attached to
one of the vertices, giving the case of I'(Za, 1, (Z2, 2)).

Finally, suppose that (I';G) has n > 3 vertices. These must be connected
by at least n — 1 trivial edges, so —% =x(I'G) <5 —-(n—-1)=1-%. This
implies that n = 3 and (T, G) = T'(Z2, 1,Zs,1,Z5). O

Corollary 2.10. The handlebody orbifold quotients of G-actions on the genus
two handlebody are exactly those given in Figure 2.

Note that the handlebody orbifolds of Figure 2 correspond to the G-admissi-
ble graphs.

3. Finite group actions on G-manifolds of genus two

Definition 3.1 ([9]). A closed 3-manifold M is called a G-manifold of genus
g if it admits an action of the finite group G and g is the minimal genus of
a Heegaard splitting of M for which both handlebodies are invariant under
the G-action. This minimal g is called the equivariant Heegaard genus of the
action.

Definition 3.2 ([9]). A Heegaard decomposition of a closed orientable orbifold
O is a decomposition of the orbifold into two handlebody orbifolds H; and Hs
intersecting in their common boundary (a 2-orbifold).

Suppose that M is a G-manifold of genus 2 and the Heegaard decomposition
of M is (M : V1, V,) with gluing map f : 9V4; — 9Va. From now on, the
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FiGURE 2. All handlebody orbifolds from genus two handlebody.

Heegaard genus is assumed to be 2 unless otherwise specified. Then the quotient
orbifold O := M/G is the union of two handlebody orbifolds H; := V; /G and
Hs := V5/G by the gluing map ¢ : OH; — OHs induced from f. So using
Corollary 2.10 we get the following theorem.

Theorem 3.3 (Main Theorem). Suppose that M is a closed G-manifold of
genus 2 with Heegaard decomposition (M : V1, Va). Then the quotient orbifold is
the sum of two handlebody orbifolds, where the two corresponding G-admissible
graphs of handlebody orbifolds are the same type except in the following cases.

(1) O is a union of two handlebody orbifolds where one handlebody orbifold
is modeled on T'(Z2,1) and the other handlebody orbifold is modeled on
F(Z27 13 (Z% 2))



866 JUNGSOO KIM

(2) O is a union of two handlebody orbifolds where one handlebody orbifold
is modeled on T'(Zy,1,D3) and the other handlebody orbifold is modeled
on F(DQ, 2, ]D)Q, 2, ]D)Q)

(3) O is a union of two handlebody orbifolds where one handlebody orbifold
is modeled on T'(Z2,1,7Z3) and the other handlebody orbifold is modeled
on F(Dg, 2, ]D)g)

Proof. Consider the gluing map ¢ : 9H; — OHs. Since G acts on V; and
V5 simultaneously and preserves Vi and V5, H; and Ho are both handlebody
orbifolds of G-actions. Since ¢(9H1) = OHa, the numbers of singular points
in OH; and OHs are the same and ¢ sends singular points to singular points
of the same index. Using the classification given in Corollary 2.10, we observe
that H; and H, are the same orbifold homeomorphism type except in some
cases of G = Zs, Dy and D3. In the case of Zy, some unions of H; and Ho
obtained from I'(Z,, 1) and I'(Zs, 1, (Z2,2)) are also possible. In the case of Dy,
some unions of H; and Hy obtained from I'(Zy,1,D3) and I'(Ds, 2, Do, 2, D)
are also possible. In the case of D3, some unions of H; and Hs obtained from
I'(Z2,1,Z3) and T'(D3,2,D3) are also possible. O

4. Non-hyperbolic geometric quotients of G-manifolds of genus two

In [2], W. Dunbar classified non-hyperbolic geometric 3-orbifolds using the
following classification theorem.

Proposition 4.1 ([2, Theorem 1]). Suppose that O3 is a geometric orbifold.
Then exactly one of the following holds:

(1) O3 is a hyperbolic orbifold.

(2) O3 is a Seifert fibered orbifold with base O?, in which case one of the
following descriptions applies (both may apply if O fibers in more than one
way) :

(a) if 0X? = 0 (X? denotes the underlying space of O?), then X3 is a
closed Seifert fibered manifold, and Xos consists of fibers (labeled with
various integers > 1);

(b) if 0X2 has n components (n > 0), then X3 is the result of gluing solid
tori to a Seifert fibered manifold with n boundary tori, such that the
meridians of the tori are glued to fibers on the boundary. Xos consists
of fibers, plus a Montesinos link (labeled < 2 >, and slightly modified)
inside each added solid torus.

(3) O3 is a solvorbifold; in particular, it fibers over either S' or St /reflection,
with fiber either T? or T? /(180° rotation fizing 4 points) = (S xS')/ (reflection
of both factors).

(4) O3 is one of the 12 Euclidean orbifolds (11 with X3 ~ S3 and 1 with
X3 ~ RP?) or 18 spherical orbifolds (all with X3 ~ S®) which are not fibered
over 2-orbifolds.
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Dunbar worked out a complete classification of non-hyperbolic geometric 3-
orbifolds with underlying space S®. They are listed in his explicit descriptions
of figures on pp. 81-86, pp. 89-93, p. 97 of [2]. Thus all closed geometric
orbifolds with underlying space S® not in Dunbar’s figures are hyperbolic (see
the details in the last paragraph of p. 69 in [2]).

Lemma 4.2. Suppose that M is a closed G-manifold of genus two where G
is a group of finite-order orientation preserving diffeomorphisms. Then the
underlying space of the quotient orbifold O := M/G is either
(1) S3, or
(2) L(p,q) in which case any one of both handlebody orbifolds is obtained
f?“om F(ZQ, 1), F(Zg, 1, (Z27 2)) or F(]DQ, 2)

Proof. Consider the cases any one of both handlebody orbifolds is obtained
from T'(Z2, 1), T'(Za, 1, (Z2,2)) or T'(D2,2). Then the underlying spaces of both
handlebody orbifolds are homeomorphic to solid tori by Theorem 3.3 and Corol-
lary 2.10, so O is homeomorphic to L(p, q) for some p,q (S* and S? x S! are
included). Otherwise, the underlying spaces of both handlebody orbifolds are
homeomorphic to B3, so the underlying space of O is a union of two 3-balls by
identifying their boundaries, i.e., S3. (I

In the remainder of this section, we will determine the quotient orbifolds
that are non-hyperbolic and geometric with underlying space S3.

From now on, let M be a G-manifold of genus two, where G is finite and
orientation-preserving. Fix an invariant Heegaard decomposition (M : Vi, V3).
We will denote the quotient orbifolds V1 /G, V»/G, and M/G by Hy, Ha, and
O respectively.

Suppose that both of H; and Hy are rational tangle orbifolds. Since O is
obtained by identifying the boundaries of H; or Hs, it has underlying space S3
and singular set a knot or link of at most two bridges. We will refer to such a
knot of link as a (< 2)-bridge knot or link.” We remind the reader that for a
2-bridge link, each component is a 1-bridge knot so is a trivial knot.

We call a orbifold a rational tangle orbifold if it its underlying space is a
3-ball and the singular loci form a rational tangle. We say that two rational
tangle orbifolds are the same if the indices of the singular loci of one orbifold
are the same as those of the other. From Corollary 2.10 and Theorem 3.3, we
have the following result immediately:

Lemma 4.3. Suppose that one of Hy1 or Ho is a rational tangle orbifold, then
the other is the same rational tangle orbifold, so the singular locus of O is a
(< 2)-bridge knot or link. In particular, if the indices of the two components
of the singular locus of Hi are different, then the singular locus is a 2-bridge
link, and each component is unknotted.

In many of Dunbar’s figures, the singular loci form a “Montesinos graph.”
The definition of a Montesinos graph is similar to that of a Montesinos link,
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FIGURE 3. The tangled graph with parameter (55,235)

but the Montesinos graph uses “tangled graphs” which are a bit different from
rational tangles (see Figure 3). In Dunbar’s article the parameter (m,n) of
each rational tangle means the continued faction of m/n, but in many other
authors’ articles the parameter (m,n) of each rational tangle means the con-
tinued fraction of n/m. We will use Dunbar’s notation to represent rational
tangles for convenience. If a tangled graph has coprime parameter (m,n), then
it is exactly same as a rational tangle with same parameter. If ged(m,n) # 1,
then there is a strut of index ged(m,n) which connects the strands in the in-
nermost twist as in Figure 4. For the parameter (m,n) we will require that
m,n € Z, |m| <n/2 and n > 1. The tangled graph with parameter (—m,n) is
obtained by reversing all crossings in the tangled graph with parameter (m,n).
All the indices of singular loci of Montesinos graph are 2 except the struts from
tangled graphs with parameters (m,n), where ged(m,n) > 2. In Montesinos
graphs, a tangled graph with parameter (0,n) is also possible, which is a tangle
with two horizontal strands with a vertical strut of index n which connect them
(see Figure 5). See section 4 of [2] for more details.

In some cases when the Montesinos graphs are Montesinos links, we need to
determine the bridge number of the singular locus. In Dunbar’s figures, there
are at most three tangled graphs with parameters in Montesinos graphs. In
the cases of Montesinos links with » = 3 rational tangles (so the parameters
(mj,n;) are coprime for all i), we may say that the bridge number is 3 by
Lemma 4.4.

Lemma 4.4 ([1, Theorem 1.1]). If L = m(0le; (a1, 1), - - -, (o, Br)) is a Mon-
tesinos link with r > 3 rational tangles, then w(L) = b(L) = r, where w(L) is
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F1GURE 5. The tangled graph with parameter (0, n)

the minimal number of meridian generators necessary to generate w1 (S* — L)
and b(L) is the bridge number of L.

From Theorem 4.5 to Theorem 4.16 we will consider the cases when the
underlying spaces of O are homeomorphic to S* (see Lemma 4.2). So we will
find appropriate candidates of @ in Dunbar’s figures case by case using The-
orem 3.3. In each theorem, we will describe some possible orbifolds for each
case. But the converse may not be true. That is, some orbifold O can be in
the list of candidates, but there might not exist a finite group action G and a
G-manifold M of genus two such that O’ = M/G.

In each figure, the page number shown is the page number where the figure
appears in [2] and the type of the orbifold following the page number is the type
of orbifold in Proposition 4.1. Each figure is just a redrawing of Dunbar’s figure,
but not all the information in the original figure appears. For more information
about the orbifold in each figure (its base orbifold, its geometry, whether it
has an orientation reversing self-diffeomorphism, etc) see the original figure of
Dunbar. If the orbifold has a bona fide mirror image (another oriented orbifold
such that there is an orientation-reversing diffeomorphism between the two,
but no orientation-preserving diffeomorphism), only one of the pair is pictured
(see section 6 of [2]). In the cases when coefficients must be prescribed, the
prescribed coefficients appear with an emboldened font in a rectangular box.

Theorem 4.5. Suppose that O is non-hyperbolic and geometric. If both Hy
and Ha are handlebody orbifolds modeled on T'(Za,1,Z3) (so G = Zg or D3),
then O is one of the orbifolds in Figure 6.

Proof. By Lemma 4.3, the singular locus of O is a two bridge link with one
component having index 2 and the other having index 3. (]
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FIGURE 6. H; and Hy : T'(Z3,1,Z5). In the last figure, the
coefficients k£ and m need to be determined so that the com-
ponent is an unknot.

Theorem 4.6. Suppose O is geometric. If Hy and Ha are handlebody orbifolds
modeled on I'(Z2,1,Zs3) and T'(Dq,2,D3) respectively (so G =2 Ds3), then O s
hyperbolic.

Proof. In this case, the singular locus is connected and consists of two vertices
of degree 3 and three edges, one is of index 3 and the others are of index 2. In
particular, all the edges are non-separating edges in the graph of the singular
locus. Since such orbifolds do not exist in Dunbar’s list of figures, the orbifold
must be hyperbolic. (Il
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FIGURE 7. H; and Ho : T'(Z4,1,Zs). In the second figure, the
coefficient k£ need to be determined so that the component is
an unknot.

Theorem 4.7. Suppose that O is non-hyperbolic and geometric. If both Hy
and Ha are handlebody orbifolds modeled on I'(Zy,1,Z2) (so G = Zy), then O
is one of the orbifolds in Figure 7.

Proof. A similar argument shows the result. O

Theorem 4.8. Suppose that O is non-hyperbolic and geometric. If both Hy
and Hy are handlebody orbifolds modeled on T'(Zs,1,Zs3) (so G = Zs), then O
is one of the orbifolds in Figure 8.

Proof. By Lemma 4.3, the singular locus is a (< 2)-bridge knot or link. If the
singular locus is a knot, then the index of the singular locus is 3 and if the
singular locus is a link, then the indices of the components are both 3. In the
case of the torus knot, we may use the fact that the bridge number of a (p, q)
torus knot is the minimum of p and gq. O

Theorem 4.9. Suppose that O is non-hyperbolic and geometric. If both H;
and Hs are handlebody orbifolds modeled on T'(Za,1,Z2,1,Z2) (so G = Zs),
then O is one of the orbifolds in Figure 9 and 10.
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O ® O

p.81 (type 2a) p.86 (type 4) p-89 (type 2a)
ONCIRY
C\)a L\Js
p.90 (type 2a) p.90 (type 2a) p-90 (type 2a)

FIGURE 8. H; and Hs : T'(Z3, 1, Zs)

Proof. In this case the singular locus may be a link with two or three com-
ponents or a knot. All components have index 2. In the case of a link with
three components, each component is unknotted. In the case of a link with
two components, one component is an unknot and the other component is a
(< 2)-bridge knot. In the case of a knot, the singular locus is a (< 3)-bridge
knot. Some cases of Montesinos graphs are also possible when the parameters
of the tangles are all coprime (so the Montesinos graphs are really Montesinos
links). O

From now on, we will use the notation “the induced rational tangle” to denote
the rational tangle which is obtained from a given tangled graph by substituting
(m/ ged(m,n),n/ ged(m,n)) for (m,n) where (m,n) is a parameter of the given
tangled graph and m # 0. If the tangled graph has a parameter (0,n), then the
induced rational tangle denotes just the remaining horizontal two strands after
removing the vertical strut of index n. We will use the notation “The induced
rational tangle is trivial.” to denote that the parameter of the original tangled
graph is (0,n), n > 1. We will also use the notation “the induced Montesinos
link” to denote the Montesinos link which is obtained from a given Montesinos
graph by substituting the induced rational tangles for its tangled graphs. The
induced Montesinos link is exactly the same as the Montesinos link which is
obtained from the given Montesinos graph by removing all the struts.

Theorem 4.10. Suppose that O is non-hyperbolic and geometric. If both H;
and Ha are handlebody orbifolds modeled on T'(Za,1,D2) (so G =2 Dy), then O
is one of the orbifolds in Figure 11.

Proof. In this case, there are two vertices of degree 3 in the singular locus of O
and the indices of the edge of the singular locus are all 2. If the singular locus
is disconnected, then one component is unknotted and the other consists of two
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Two or three components cases. In the last figure, the coefficients
k, I need to be determined so that each component is a (< 2)-
brldge knot and the number of components does not exceed 3.
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p.89 (type 2a) p.90 (type 2a)  p.90 (type 2b)

Two components cases.

FIGURE 9. H; and Hsy : T'(Z2,1,Zo,1,7Z5)
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Montesinos graphs with three tangled graphs.
All tangles must have coprime coefficients.

p.90 (type 2a) p-90 (type 2a)
One component cases.

FIGURE 10. Hy and Hs : [(Z2,1,Z2,1,Z2)

vertices of degree 3 and three edges which connect them (see Figure 12(a)). If
the singular locus is connected, then it consists of two vertices of degree 3, an
edge which connects them and two loops whose base points are the two vertices
(see the top of Figure 12(b)), or it consists of two vertices of degree 3 and three
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FIGURE 11. H; and Hsy : T'(Z2,1,D2). In the case of a Mon-
tesinos graph, the coefficients need to be determined so that
the induced Montesinos link is a (< 2)-bridge link.
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FIGURE 12. A rough sketch of singular loci in the cases of I'(Zz, 1,1D3).

=0 &0

F1GURE 13. The figure of the Claim of Theorem 4.10

edges which connect them (see bottom of Figure 12(b)). We need the following
claim to consider the cases of Montesinos graphs.

Claim. Suppose that the singular locus is a Montesinos graph with three tangled
graphs. Then (m;,n;) = (0,2) for one i and gcd(m;,n;) =1 for the others. In
addition, regardless of the number of the tangled graphs, the induced Montesinos
link is a (< 2)-bridge link.

Proof of Claim. Suppose that the singular locus is a Montesinos graph. Since
there are two vertices of degree 3, one strut is from some tangled graph with
non-coprime parameter and it connects both vertices of degree 3. So the only
possible case is as in Figure 13 (the strut is the union of two thick lines in
the figure). If we remove the strut from the singular locus, then both H; are
rational tangle orbifolds. So the induced Montesinos link is a (< 2)-bridge link.

If all the induced rational tangles are non-trivial, then the induced Mon-
tesinos link has bridge number 3 by Lemma 4.4, but this is a contradiction. So
some induced rational tangle is trivial, i.e., (m;,n;) = (0,2) for some i. This
completes the proof of Claim.

Some cases of Montesinos graphs are possible. If the number of tangled
graphs is 2 or less, then ged(m;,n;) = 2 for only one 7 and ged(m;, n;) = 1 for
the other. If the number of tangled graphs is 3, then (m;,n;) = (0,2) for one 4
and ged(mg,n;) =1 for the others by Claim. O
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FIGURE 14. H; and Hs : T'(D,2,D9,2,Dy). In the case of
a Montesinos graph, the coefficients need to be determined so
that the induced Montesinos link is a (< 2)-bridge link.

Theorem 4.11. Suppose that O is non-hyperbolic and geometric. If both H;
and Ho are handlebody orbifolds modeled on T'(Dg,2,D9,2,D5) (so G = Dy),
then O is one of the orbifolds in Figure 14.

Proof. In this case, the singular locus is connected and has six vertices, all of
degree 3. All edges have index 2, and no edge separates or is a loop by itself.
We need the following claim to consider the cases of Montesinos graphs.

Claim. Suppose that the singular locus is a Montesinos graph with three tangled
graphs, as in Theorem 4.11. Then (m;,n;) = (0,2) for onei and ged(m;,n;) =
2 for the others. Moreover, the induced Montesinos link is a (< 2)-bridge link.

Proof of Claim. Suppose that the singular locus is a Montesinos graph. Since
there are six vertices of degree 3, three struts of index 2 are from three tangled
graphs with non-coprime parameters. So ged(m;,n;) =2 foralli=1,2,3. It is
easy to see that no two struts can be adjacent. We will consider each possible
case.

Case 1. Consider the case when no strut is entirely contained in some H;
(see Figure 15 (a)). If we remove the three struts from the singular locus, then
the result L consists of two arcs each of which is trivially embedded in H;,
i =1,2, so L is an unknot. If all the induced rational tangles are non-trivial,
then b(L) = 3 by Lemma 4.4, a contradiction. Hence some induced rational
tangle is trivial, i.e., (m;,n;) = (0,2) for some i.

Case 2. Consider the case when some strut e; is entirely contained in one
of the H;, say Hy. As shown in Figure 15(b), some strut es must be entirely
contained in Hs, since otherwise a strut would be adjacent to e; in H;. So
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F1GURE 15. The figure of the Claim of Theorem 4.11

removing all three struts from the singular locus produces a rational tangle
orbifold, so the remaining singular locus L is a (< 2)-bridge link and is the
induced Montesinos link. If the induced rational tangles are all non-trivial,
then b(L) = 3 by Lemma 4.4, a contradiction. Hence some induced rational
tangle is trivial, i.e., (m;,n;) = (0,2) for some i. This completes the proof of
the Claim. O

Some cases of Montesinos graphs are possible. Since the number of struts
is 3, we only need to check the cases of Montesinos graphs with three tangled
graphs and we can say that (m;,n;) = (0,2) for one ¢ and ged(m;,n;) = 2 for
the others by the Claim. O

Theorem 4.12. Suppose that O is non-hyperbolic and geometric. If Hy and
Ho are handlebody orbifolds modeled on T'(Za,1,Ds) and T'(Dg, 2,Dy,2,Ds) (so
G =2 Dy), then O is one of the orbifolds in Figure 16.

Proof. The singular locus is a connected graph with four vertices, all of degree
3, and the indices of all edges are 2. We need the following claim to consider
the cases of Montesinos graphs.

Claim. If the singular locus is a Montesinos graph with three tangled graphs in
the configuration of Theorem 4.12, then (m;,n;) = (0,2) for one i, ged(m;, n;)
= 2 for another i and ged(m;,n;) =1 for the other i. In addition, regardless of
the number of the tangled graphs, the induced Montesinos link is a (< 2)-bridge
link.

Poof of Claim. Suppose that the singular locus is a Montesinos graph with
three tangled graphs. Since there are four vertices of degree 3, two struts are
from two tangled graphs with non-coprime parameters. So ged(m;,n;) = 2 for
two i’s and ged(m;,n;) = 1 for the other. We will consider each possible case.

Case 1. Suppose that a strut is entirely in Hsy. Since the other strut meets
the vertex of degree 3 in Hj, the only possible situation is as in Figure 17(a).
If we remove two struts from the singular locus then both H; and Hs are
rational tangle orbifolds, so the induced Montesinos link is a (< 2)-bridge link.
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FIGURE 16. Hl : F(Zg, 17]]])2)7 H2 : F(D2,2,D2,27D2). In the
case of a Montesinos graph, the coefficients must be deter-
mined so that the induced Montesinos link is a (< 2)-bridge
link.

By Lemma 4.4 the number of non-trivial induced rational tangles is less than
or equal to 2. So (m;,n;) = (0,2) for some i.

Case 2. Suppose that no strut is entirely contained in Hy. We must have the
configuration of Figure 17(b), so removing the struts from the singular locus
produces a trivial knot. Lemma 4.4 now shows that some induced rational
tangle is trivial, i.e., (m;,n;) = (0,2) for some i. This completes the proof of
the Claim. O

Some cases of Montesinos graphs with at least two tangled graphs are possi-
ble. If the number of tangled graphs is 2, then ged(m;,n;) = 2 for all 4. If the
number of tangled graphs is 3, then (m;,n;) = (0,2) for one i, ged(m;, n;) = 2
for another ¢ and ged(m;,n;) = 1 for the other ¢ by the Claim. The induced
Montesinos link is a (< 2)-bridge link by the Claim. O



880 JUNGSOO KIM

(b)

F1GURE 17. The figure of the Claim of Theorem 4.12

FiGURE 18. Lemma 4.13

Lemma 4.13. Suppose that O consists of two handlebody orbifolds H1 and Ha
modeled on both T'(Ds,2,D3) or both T'(Dy, 2,Dy4) or both T'(Dg, 2,D3). Suppose
that the singular locus is a Montesinos graph. Then the induced Montesinos
link is an unknot. If the number of tangled graphs is 3, then for some i,

k=3, if G = Dy,
(mi,n;) = (0,k) where { k=2 or4, if G=Dy,
k=2or3. ifG=0Ds.

Proof. The singular locus in O is a connected graph with four vertices of degree
3. Suppose that it is a Montesinos graph. Then two struts are from two tangled
graphs with non-coprime parameters. So the number of tangled graphs is at
least 2. It is easy to see that the two struts cannot be adjacent. Let the
only edge which is contained entirely in each H; be e;. Since any edge whose
index is greater than 2 must be among the two struts, no e; can be among
the struts in this Montesinos graph (see Figure 18). In this configuration, if
we remove the two struts from the singular locus then the induced Montesinos
link is an unknot. So if the number of tangled graphs is 3, then some induced
rational tangle is trivial by Lemma 4.4. So we get (m;,n;) = (0, k) where k is
determined by G. (]

Theorem 4.14. Suppose that O is non-hyperbolic and geometric. If both Hy
and Hz are handlebody orbifolds modeled on T'(D3,2,D3) (so G = D3), then O
is the orbifold in Figure 19.
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FIGURE 19. H; and Hs : T'(D3,2,D3). In the case of a Mon-
tesinos graph, the coefficients must be determined so that the
induced Montesinos link is an unknot.

Proof. In this case, the singular locus is a connected graph with four vertices,
all of degree 3, and two edges of index 3. All other edges have index 2. No
edge separates or is a loop, and the two edges of index 3 cannot be adjacent.
Some orbifolds from Montesinos graphs with at least two tangled graphs are
possible. If the number of tangled graphs of a given Montesinos graph is 2, then
ged(my,n;) = 3 for all 4. If the number of tangled graphs of a given Montesinos
graph is 3, then (m;,n;) = (0,3) for one i by Lemma 4.13, gcd(m;, n;) = 3 for
another ¢ and ged(m;,n;) = 1 for the other i. The induced Montesinos link is
an unknot by Lemma 4.13. [

Theorem 4.15. Suppose that O is non-hyperbolic and geometric. If both H;
and Ha are handlebody orbifolds modeled on I'(D3,2,Dy) (so G = Dy), then O
is one of the orbifolds in Figure 20.

Proof. In this case, the singular locus is a connected graph with four vertices,
all of degree 3, and with one edge of index 4. All other edges have index 2. No
edge separates or is a loop.

Some orbifolds from Montesinos graphs with at least two tangled graphs are
possible. If the number of tangled graphs of a given Montesinos graph is 2, then
ged(my,n;) = 2 for one ¢ and ged(m;,n;) = 4 for the other ¢. If the number
of tangled graphs of a given Montesinos graph is 3, then (m;,n;) = (0,2) for
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FIGURE 20. H; and Hs : ['(Dg,2,D4). In the case of a Mon-
tesinos graph, the coefficients must be determined so that the
induced Montesinos link is an unknot.

one i by Lemma 4.13, ged(m;,n;) = 4 for another ¢ and ged(m;,n;) = 1 for
the other ¢ or (m;,n;) = (0,4) for one i by Lemma 4.13, gcd(m;,n;) = 2 for
another ¢ and ged(m;,n;) = 1 for the other i. The induced Montesinos link is
an unknot by Lemma 4.13. O

Theorem 4.16. Suppose that O is non-hyperbolic and geometric. If both Hy
and Hz are handlebody orbifolds modeled on T'(Dq,2,D3) (so G = Dyg), then O
is one of the orbifolds in Figure 21.

Proof. In this case, the singular locus is a connected graph with four vertices,
all of degree 3, and with one edge of index 3. All other edges have index 2. No
edge separates or is a loop.

Some orbifolds from Montesinos graphs with at least two tangled graphs are
possible. If the number of tangled graphs of given Montesinos graph is 2, then
ged(my, n;) = 2 for one ¢ and ged(m;, n;) = 3 for the other ¢. If the number of
tangled graphs of given Montesinos graph is 3, then (m;,n;) = (0,2) for one 4
by Lemma 4.13, ged(m;, n;) = 3 for another ¢ and ged(m;, n;) = 1 for the other
i or (my,n;) = (0,3) for one i by Lemma 4.13, ged(m;,n;) = 2 for another 4
and ged(m;, n;) = 1 for the other i. The induced Montesinos link is an unknot
by Lemma 4.13. (]
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FIGURE 21. H; and Hs : T'(Dg, 2,D3). In the case of a Mon-
tesinos graph, the coefficients must be determined so that the
induced Montesinos link is an unknot.

In the remaining part of this section, we will consider the cases when the
underlying space of 0% is L(p, q).

Definition 4.17 ([4]). Let V be a solid torus and let a be an arc properly
embedded in V. We say that a is trivially embedded in V if there is a disk D
in V such that D NIV is an arc b and cl(0D — b) = a. Let K be a knot in
a lens space. We say that K is a one bridge knot in a lens space if there is a
Heegaard splitting (Vi, V2; F') of the lens space such that each V; N K is an arc
trivially embedded in V; for ¢ = 1, 2.

Theorem 4.18. If both H1 and Ha are handlebody orbifolds modeled on T'(Zs,
1) (so G = Zs), then the underlying space is homeomorphic to L(p,q) and
the singular locus is a one bridge knot in L(p,q). Moreover, if the underlying
space is homeomorphic to S® and O is non-hyperbolic and geometric, then the
singular locus is an unknot (Figure 22 means the existence of such Q).
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k#z0
p-90 (type 2b)

FIGURE 22. H; and Ha : T'(Z2,1). A case of underlying space
S3. The coefficient is determined so that the Montesinos graph
is an unknot.

Proof. By Lemma 4.2 the underlying space is L(p,q). Because the singular
locus in each H; for ¢ = 1,2 is a trivially embedded arc of index 2, the singular
locus of O is a one bridge knot in a lens space of index 2.

If the underlying space is homeomorphic to S*, then the singular locus is
just an unknot. So we only need to find a candidate which induce an unknot
of index 2 as a singular locus in Dunbar’s figures. O

Theorem 4.19. If both H1 and Ha are handlebody orbifolds modeled on T'(Zs,
1,(Z2,2)) (so G = Zs), then the underlying space is homeomorphic to L(p,q).
The singular locus consists of two core loops of H; and a one bridge knot in lens
space. If the underlying space is homeomorphic to S and O is non-hyperbolic
and geometric, then O is one of the orbifolds in Figure 23.

Proof. By Lemma 4.2 the underlying space is L(p, ¢). The singular locus in O
is easily deduced from the singular loci in the H;, and it consists of three loops
of index 2.

From now on we consider the cases of the underlying space S* = L(1,q).
Both two core loops in H; for ¢« = 1,2 are unknots and the linking number is
+1. This rules out many candidates in Dunbar’s figures. Moreover, the union
of two arcs from each H; for ¢« = 1,2 is an unknot from the construction of
L(1,q) (but it can be linked with the core of some H;). So we only need to
find figures with three unknotted components, two of them linked with linking
number £1. O

Theorem 4.20. If Hy and Hs are handlebody orbifolds modeled on T'(Zs,1)
and T(Z2,1,(Z2,2)) (so G = Zs), then the underlying space is homeomorphic
to L(p,q). The singular locus consists of the core of Ha and a one bridge
knot in lens space. If the underlying space is homeomorphic to S® and O is
non-hyperbolic and geometric, then O is one of the orbifolds in Figure 2/.
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o« k is even.

=
=
k#-1 § @

p-83 (type 2b) p.84 (type 2b) p-89 (type 2a)

k = %1, lis even or

[kiseven| K#0
[#2] Ot

kis even, = £1

kz0

|kl -2]>2
p.91 (type 2b) p.91 (type 2b) p.97 (type 3)

FIGURE 23. H; and Ha : T'(Zg,1,(Z2,2)). The cases of un-
derlying space S%. In addition, the 3rd figure in “two or three
components cases” in Figure 9 and the figures in “Montesinos
graphs with three tangled graphs” in Figure 10 are also pos-
sible if the coefficients are determined so that the components
are three unknotted loops and two of them have linking num-
ber +1.

Proof. By Lemma 4.2 the underlying space is L(p, ¢). The singular locus in O
is easily deduced from the singular loci in the H; for ¢ = 1,2, it consists of two
loops of index 2.

From now on we consider the cases of the underlying space S* = L(1,q). The
core loop in Hs is an unknot. Moreover, the union of two arcs from each H;
for i = 1,2 is an unknot from the construction of L(1,q) (but it can be linked
with the core of Hz). So we only need to find figures with two unknotted
components. [l

Theorem 4.21. If both H1 and Ha are handlebody orbifolds modeled on T'(Dg,
2) (so G =2 Dy), then the underlying space is homeomorphic to L(p,q). The
singular locus consists of two core loops in ‘H; and an edge connecting the two
loops. If the underlying space is homeomorphic to S® and O is non-hyperbolic
and geometric, then O is one of the orbifolds in Figure 25.

Proof. By Lemma 4.2 the underlying space is L(p, ¢). The indices of edges in
the singular locus are all 2. The singular locus in O is easily deduced from the
singular loci in the H;. It consists of two vertices of degree 3, a loop based on
each vertex, and an edge connecting the vertices.
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D -]

p-85 (type 2b) p- 89 (type 2a) p. 89 (type 2a)
k=1,I=-1or
k=-1,1=1 I
- - n
k#0 K -2>2

k#0
p.90 (type 2b) p.90 (type 2b)  p.91 (type 2b) p.97 (type 3)

FIGURE 24. H; : T'(Z2,1) and Hz : I'(Zo,1,(Z2,2)). The
cases of underlying space S?. In addition, the 3rd figure in
“two or three components cases” in Figure 9, the 2nd figure in
“one or two components cases” in Figure 10 and the figures in
“Montesinos graphs with three tangled graphs” in Figure 10
are also possible if the coefficients are determined so that the
components are two unknotted loops.

From now on we consider the cases whose underlying spaces are S®.

Suppose that the singular locus is a Montesinos graph. Since there are only
two vertices of degree 3, exactly one strut is from some tangled graph. If we
remove the strut, then the remaining singular locus is a link with two compo-
nents. So we can say that the number of components of the induced Montesinos
link is 2. In addition, the strut must connect two different components. This
rules out most Montesinos graphs as possible candidates. For example, con-
sider the Montesinos graph m(0|k; (m1, 2), (m2,4), (m3,4)) (see p. 84 of [2]. The
parameter (m,n) of the tangled graph uses the continued fraction of m/n by
Dunbar’s notation). Possible triples of parameters (my, ms, ms) are (0, =1, +1),
(£1,£2,41) and (£1, 41, £2). In the first triples, the strut connects the same
component. In the second and third triples, the strut connects different compo-
nents, but the number of components of the induced Montesinos link is 3. So
the Montesinos graph with parameters m(0|k; (m1,2), (ma,4), (ms,4)) is im-
possible. In the case of the Montesinos graph m(0|k; (mq, 2), (ma, 2), (ms,n)),
(see p. 91 of [2]) possible triples of parameters (mq, ma, mg) are (0,£1, +ms3)
with ged(mg,n) = 1, (£1,0,4+ms) with ged(ms,n) = 1 and (£1,+1, £m3)
with ged(ms,n) = 2. In the first and second triples, the strut is attached to
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ged(m,,n)=2, ged(m,,n) =1 or

| m1=i1, m2=i1, m3=i3 | ng(mlln)=1I ng(mZIn) =2
—
(K]
m. 2] {m.3[{mo @)
p.85 (type 2b) p.91(type 2b)

’ m,=0, m,= +1, m;=%1, kis even ‘

l

=~

, 2 3 3
m, 2] m. 3] m o
k+m/2+m,/3+m,/3%0 )

p.92 (type 2b) p.92 (type 2b)

T ¥ n m,=0, m,= 1, m,;=%1, k is even,
’ m,=£1, my= £1, my=12 ‘ m,;=0, m,= 1, m;=12, k is odd

[K] [K]
m.2] [ m, 3] m,4 m.2] [ m, 3] {m,5

k+m/2+m,/3+m,/4%0

k+m/2+m,/3+m,/5£0
p.92 (type 2b) p.92 (type 2b)

FIGURE 25. H; and Hs : T'(Dg,2). The cases of underlying
space S®. In the second figure, the coefficients must be de-
termined so that the number of components of the induced
Montesinos link is 2.

the same component. In the third, there is a component that does not meet the
strut. So the Montesinos graph m(0|k; (m1,2), (mg, 2), (ms,n)) is impossible.
In some cases we can restrict the coefficient k£ of the Montesinos graphs. For
example, consider the Montesinos graph m(0|k; (m1,2), (m2,3), (ms,3)) (see
p. 92 in [2]). Possible triples of parameters (my,mo, ms3) are (0,£1,41). In
this case, if k is odd, then the number of components of the induced Montesinos
link is 1 and if k is even, then the number of components of induced Montesinos
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link is 2 and the strut connects different components. So we can say that if
this case occurs, then k must be even. (I

5. Some hyperbolic quotients of G-manifolds of genus two are
impossible.

In this section, we will prove that the fundamental groups of the quotient
orbifolds are not in a certain class D.

The class D was defined by E. Klimenko and N. Kopteva [3], who classi-
fied the orbifolds whose fundamental groups belong to a certain class RP. A
pair (f,g) of elements in PSL(2,C) is called an RP-pair if tr?(f), tr?(g), and
tr([f, g]) are all real. The class RP of Kleinian groups is defined by

RP ={T:T = (f,g) for some RP-pair (f,g)}.

For an RP-pair (f,g), define B8 = tr2(f) —4 , ' = tr’(g) — 4, and v =
tr([f, g]) — 2. Define a subclass of RP by

D = {T':T ={f,g) for some RP-pair (f,g) with
ﬁ > _47 ﬁ/ > _47 and v < _56//4}
The class D consists of the groups that have no invariant plane but can be

generated by elements with real traces. Such groups are characterized in the
following proposition:

Proposition 5.1 ([3, Proposition 1.1]). Let T' be a subgroup of PSL(2,C)
generated by an RP-pair (f,g). Then > —4, 3/ > —4, v < —p6'/4, and
~v # 0 if and only if T' satisfies all of the followings:

(1) T is non-elementary.

(2) T has no invariant plane (in particular, ' is not Fuchsian).

(3) Each of f, g is either elliptic, parabolic, or hyperbolic.

Using this characterization, Klimenko and Kopteva classified the groups in
D up to isomorphism (Theorem 2.1 of [3]), and listed the Kleinian orbifolds
Q(T) with I" € D (Theorem 3.1 of [3]). In section 3.3 of [3], they classified the
T in D for which Q(T') is compact.

Definition 5.2 ([3, Section2]). We define the following group presentations:
(1) GT[n,m;q] = (f, glf" 9™, [f, 9]
2) PH[n,m,q] = (z,y, zlz", y?, 2%, (zy)?, [,y]™, (yryz)9).
3) Hlp;n,m;q) = (x,y, s|s*, &, y™, (xzy~ )P, (swsy=1)9, (sz~'y)?).
4) Pln,m,q] = (w, z,y, z|w™, 22, 32, 22, (wz)?, (wy)?, (y2)?, (z2)7, (zw)™).
5) Tet[Pl,p2,P3;Q1,QQ»QS] = <x7y72|xp17 yp27 zp37 (xy_l)QSa (yz—l)th’
(z271)%). The group Tet[2,2,n;2,q,m] is denoted by Tet[n,m;q] for sim-
plicity.
(6) GTth[ﬂ, m, q] = <$, Y, Z‘xnv 3127 (xy)m7 [y7 Z}qv [$7 Z]>
(7) GTetolnm.q] = (z,y, 2|, 4, ()™, (x5~ 1y~ 2)", [z, 2]).
(8) Sa[n,m,q] = (x, L|z", (xLxL=Y)™, (zL?z~1L=2)4).

(
(
(
(
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(9) S3[n,m,q] = (z, L|a™, (xLzL=Y)™, (zLzLxL=2)7).
(10) R[nam;Q] - <u,v|(uv)”, (uvil)ma [uvv]q>'

Proposition 5.3 ([3, Section 3.3]). The compact orbifolds Q = Q(T') = H3/T'
for T' € D are exactly those for which one of the following holds:

(1) m9™(Q) = PH[n,m,q]:n=4, 3<m <5, ¢=3.
(2) 79™(Q) = Hlpsn,miq] = [pin,m,q] is [2:2,3;5], or [2;2,5;3], or

[2;3,5;2].
(3) 7™(Q) = Tet[2,3,3;2,3,¢3] : g3 = 4,5;
P (Q) 2 Tetln,m;ql:n=5 m=4,5,q=3 orn=m=3,q=5

(4) 7(Q) = Pln, m.q)
8§ <n<oo,niseven, m=3, qg=3,5;
4<n<oo,niseven, m=>5,q=3.
(5) T™(Q) = GTeta[n, m, q] :
n>7isodd, m=3,3<q<5;
n>514s odd, m=5, g=3;
n,m >3 are odd, 1/n+1/m < 1/2, g = 2.
(6) 7™ (Q) = Ssln,m,q) :
n>>514s odd, m=q=2;
n=5 m=2, q=3;
n=5m=3,q=2;
n=3, m=4,5,qg=2.
(7) 7¢™P(Q) =2 GTeti[n,m,q]: 7<n <oo, m=3, q=2.

orb ~

There are no compact orbifolds in the class D with n$™(Q) = GT[n,m;q|,
Sa[n,m, q], or R[n,2;2].

By Theorem 3.1 of [3], Figure 1 of [3] lists all Q(T") for I' € D. We need to
know some notation to interpret the figures. Let T'(n) be a Seifert fibered solid
torus obtained from a trivial solid torus D? x S! by cutting it along D? x {z} for
some x € S!, rotating one of the discs through 27 /n and gluing back together.
We denote a space obtained by gluing two copies of T'(n) along their boundaries
fiber to fiber by S(n). See Section 3.2 of [3] for more details.

Figures 26, 27 and 28 list Q(T"), but they are a bit different from the original
figures (Figure 1 of [3]). Klimenko and Kopteva used the concepts of “fat
vertex” and “fat edge”. Indeed “puncture”, “boundary” and “cusp” can appear
in Figure 1 of [3]. But in the cases of compact and closed orbifolds, no vertex
can be a puncture and all edges are just singular loci with finite indices. So
Figures 26, 27 and 28 are the same as the original figures when O is compact
and closed (see Section 3.1 of [3] for details).

In the remaining part of this section, M is a 3-dimensional compact, closed
G-manifold with genus two, where G is a finite orientation preserving diffeo-
morphism, the Heegaard decomposition of M is (M : Vi, Va), the corresponding
handlebody orbifolds are Hy := V1 /G and Hg := Vo /G and O := M/G.
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O @ @

(@) GT[n,m;q] (b) PH[n,m,gq]  (c)H[p;n,m;q]

[}
(d)Tet[ p,, Py P31 GG, %] () P[n,m,q]

FIGURE 26. The underlying space is S?

> &

(f) Orbifoldsembeddedin S(2); () Orbifoldsembeddedin S(2);
7"°(Q) 0S,[n,m,q] 7 (Q) OGTet,[n,m,q]

(h) Orbifoldsembeddedin S(3); (i) Orbifoldsembeddedin S? x S
7°(Q) OS[n,m,q] 7 (Q) OGTet,[n,m,q]

FIGURE 27. The underlying space is S(n) or S? x St

i
N

() 7"(Q) URn,22]
FIGURE 28. The underlying space is RP?

Figures 26, 27 and 28 are all from Figure 1 of [3].
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If 7$™*(O) € D, then O is one of the orbifolds in Figures 26, 27, and 28 and
also satisfies Theorem 3.3. In addition, if we use Proposition 5.3, then we may
restrict the indices of the edges of the singular locus.

Lemma 5.4. Suppose that 7{*™*(O) € D. Then the singular locus of O is a
connected graph.

Proof. In Figures 26, 27, and 28 only connected singular loci appear when O
is compact and closed. ([

By Lemma 5.4 we will consider only the cases of connected singular loci.

Theorem 5.5. If 19™°(O) € D, then G cannot be isomorphic to one of Zo, Z3,
Zy4, and Zg.

Proof. The singular loci of the listed cases are all knots or links, but there are
no such singular loci in Figures 26, 27, and 28 in the cases of compact and
closed O. (]

Theorem 5.6. Suppose that 7{*™(0) € D. All the cases of G = Dy are
impossible.

Proof. We will consider all the possible combinations of handlebody orbifolds.

Case 1. The corresponding Ds-admissible graphs for H; and Hs are both
[(Za,1,D5).

In this case, the underlying space is S? by Lemma 4.2 and there are only
two vertices of degree 3. From Figure 26 the only possible case is 7¢™(0) =
GT[n,m;q|, but it is impossible by Proposition 5.3.

Case 2. The corresponding Ds-admissible graphs for H; and Hs are both
F(]D)Qa 23 ]D)Qa 2, DQ)

The underlying space is S? by Lemma 4.2 and there are exactly six vertices
of degree 3. From Figure 26 the possible case is 79™*(0) = P[n,m,q]. But
some edge must have index larger than 2 by Proposition 5.3, contradicting the
fact that O is a union of H; and Hy where the indices of edges of the singular
locus are all 2.

Case 3. The corresponding Dy-admissible graph of H; is I'(Za, 1,D3) and
the corresponding Ds-admissible graph of Hsa is I'(Dg, 2, Do, 2, D5).

The underlying space is S* by Lemma 4.2 and the number of vertices of
the singular locus is 4. From Figure 26 the possible cases are m{™(0) =
PH(n,m,q], 7™ (0) = H[p;n,m;q] and ™(0) = Tet[py,p2, ps; ¢1, G2, q3)-
The indices of edges in the singular locus are all 2, but this is impossible by
Proposition 5.3.

Case 4. The corresponding Ds-admissible graphs for H; and Ho are all
(Do, 2).

The singular locus consists of two disjoint loops and an edge which connects
the base points of the loops. From Figures 26, 27 and 28 the possible cases

are 9™ (0) = Sy[n, m, g and 7™ (0) =2 GTety[n, m,q]. Since O is a compact
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orbifold, m§*™®(0) = Sy[n,m,q| is impossible by Proposition 5.3. Since the
indices of edges in the singular locus are all 2, 7$*™*(0) = GTeti[n,m,q| is
impossible by Proposition 5.3. (]

Theorem 5.7. Suppose that m{™(O) € D. All the cases of G = D are
impossible.

Proof. We will consider all the possible combinations of handlebody orbifolds.

Case 1. The corresponding Ds-admissible graphs for H; and Hs are I'(Zo, 1,
Z3).

The underlying space is S* by Lemma 4.2 and the singular locus is a link,
but there are no such singular loci in Figure 26 in the cases of compact and
closed O.

Case 2. The corresponding D3-admissible graphs for H; and Hs are I'(Ds, 2,
Ds).

The underlying space is S* by Lemma 4.2. The singular locus has exactly
four vertices of degree 3. Since no edge is separating edge, the possible cases are
79 (O) = Hp;n,m; q] and 79 (O) = Tet[py, p2, p3; q1, 2, g3] from Figure 26.
But all these cases are impossible since there must be an edge whose index is
larger than 3 in each case by Proposition 5.3.

Case 3. The corresponding D3-admissible graph for H; is I'(Zs, 1, Z3) and
for HQ is F(Dg, 2,D3).

The underlying space is S? by Lemma 4.2. The singular locus is connected
and consists of two vertices of degree 3 and three edges which are all non-
separating. But no such singular loci are found in Figure 26. (I

Theorem 5.8. Suppose that n{™(0) € D. All the cases of G = Dy are
impossible.

Proof. In this case, the corresponding D4-admissible graphs for H; and Hy are
I'(Dq,2,D4). The underlying space is S* by Lemma 4.2. There are exactly 4
vertices of degree 3 in the singular locus and one edge has index 4 and the
other edges have index 2. Since no edge is separating edge, the possible cases
are $™P(O0) = Hp;n,m; q] and 7™ (O) = Tet[p, p2, p3; q1, G2, q3] from Figure
26. But all these cases are impossible since there must be an edge of index 3
or 5 in each case by Proposition 5.3. O

Theorem 5.9. Suppose that n¢™(O) € D. All the cases of G = Dy are
impossible.

Proof. In this case, the corresponding Dg-admissible graphs for H; and Hy are
['(Dy,2,D3). The underlying space is S* by Lemma 4.2. There are exactly 4
vertices of degree 3 in the singular locus and one edge has index 3 and the
other edges have index 2. Since no edge is separating, the possible cases are
7P (0) =2 Hp;n,m; q] and 7P (O) = Tet|py, p2, p3; q1, 42, q3) from Figure 26.
But all these cases are impossible since there must be an edge whose index is
larger than 3 in each case by Proposition 5.3. (]
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Corollary 5.10. Suppose that M is compact, closed 3-manifold and that M is a
G-manifold of genus 2 where G is a finite orientation preserving diffeomorphism

which acts on M. Then for the quotient orbifold O, w¢™(O) ¢ D.

Proof. By Theorems 5.5, 5.6, 5.7, 5.8 and 5.9, 7$**(O) ¢ D in all the possible
cases from Theorem 3.3. O
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