Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis

임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구

  • 엄태관 (부산대학교 대학원 의공학협동과정) ;
  • 서승우 (오스템임플란트(주) 임플란트연구소) ;
  • 전계록 (부산대학교 의학전문대학원) ;
  • 신정욱 (인제대학교 공과대학 의공학과) ;
  • 정창모 (부산대학교 치의학전문대학원)
  • Published : 2009.04.30

Abstract

Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

연구목적: 임플란트 치료에서 흔히 발생하는 기계적인 문제점을 하나가 지대주나사의 풀림과 파절이다. 일반적으로 나사 연결의 안정성을 위해서는 지대주나사의 조임회전력에 의한 전하중을 나사의 탄성한계까지 증가시킬 필요가 있다. 그러나 저작운동에 의한 기능부하는 전하중이 가해진 지대주나사에 추가적인 인장력을 가하게 되어 나사의 풀림이나 파절의 가능성을 높인다. 이러한 풀림이나 파절을 방지하면서 동시에 최대의 결합 강도를 가지는 조임회전력을 찾는 연구가 필요하다. 본 연구는 지대주나사의 조임회전력이 임플란트-지대주 연결부 안정성에 미치는 영향을 3차원 유한요소 분석을 통하여 확인하고자했다. 연구 재료 및 방법: External butt joint를 가진 임플란트를 기반으로 3차원 유한요소 해석모형을 설계하였다. 조임회전력에 따른 지대주나사의 전하중을 이론치, 실험치 및 해석치를 비교하여 해석모형을 검증하였다. 검증한 해석모형에서 대해 조임회전력을 10 Ncm, 20 Ncm, 30 Ncm, 그리고 40 Ncm로 각각 적용하고 지대주에 30도 경사지게 250 N의 외부하중을 가하여 유산요소 해석을 실시하였다. 그 결과를 통해 지대주나사의 최대 등가응력을 계산하고 고정체와 지대주 연결부의 응력분포 및 이개거리(gap distance)를 산출하였다. 결과 및 결론: 본 연구조건 하에서 다음과 같은 결과를 얻었다. 1. 전하중은 조임회전력이 클수록 증가하였다. 2. 조임회전력 적용 후 최대 등가응력은 지대주나사 경부에서 발생하였으며, 나사산 체결부에서는 주로 경부쪽 네 개의 나사산에 응력이 집중되었다. 3. 외부하중을 가했을 때에도 조임회전력을 적용했을 때와 동일하게 최대 등가응력은 주로 지대주나사 경부에서 발생하였으나, 10 Ncm의 조임회전력을 적용한 경우에서는 지대주나사 두부밑면에서 발생하였다. 4. 외부하중을 가했을 때 10 Ncm와 20 Ncm의 조임회전력을 적용한 경우에서는 연결부 이개(joint opening) 현상이 관찰 되었다. 5. 조임회전력이 40 Ncm인 경우에는 경사하중에 의해 지대주나사의 경부에 발생하는 최대등가응력이 나사의 소재인 티타늄 합금의 허용응력을 초과하였다. 이상의 결과로 볼 때, 조임회전력은 고정체와 지대주 연결부의 안정성에 영향을 미치는 것이 확인되었다. 임플란트 지대주나사는 임상에서 발생하는 기능 하중을 고려하여 고정체와 지대주 연결의 안정성을 유지할 수 있는 적정 조임회전력의 크기가 제안되어야 한다.

Keywords

References

  1. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of edentulous jaw. Int J Oral Surg 1981;10:387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  2. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent 1988;60:75-84 https://doi.org/10.1016/0022-3913(88)90355-1
  3. Johansson G, Palmqvist S. Complications supplementary treatment and maintenance in edentulous arches with implant-supported fixed prostheses. Int J Prosthodont 1990;3:89-92
  4. Tolman DE, Laney WR. Tissue-integrated prosthesis complications. Int J Oral Maxillofac Implants 1992;7:477-84
  5. Carlson B, Carlsson GE. Prosthodontic complications in osseointegrated dental implant treatment. Int J Oral Maxillofac Implants 1994;9:90-4
  6. Hemmings KW, Schmitt A, Zarb GA. Complications and maintenance requirements for fixed prostheses and overdentures in the edentulous mandible: a 5-year report. Int J Oral Maxillofac Implants 1994;9:191-6
  7. Jemt T, Pattersson P. A 3-year follow-up study on single implant treatment. J Dent 1993;21:203-8 https://doi.org/10.1016/0300-5712(93)90127-C
  8. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-9
  9. Misch CE. Principles for screw-retained prostheses. in: Misch CE, ed. Contemporary implant dentistry, Missouri: CV Mosby, 1999
  10. Bickford JH. An Introduction to the design and behavior of bolted joints. New York: Marcel Dekker 1995
  11. Sakaguchi RL, Sun T, Haack JE. External strain distribution on implant prosthetic components. J Dent Res 1994;71(special issue):232
  12. McGlumphy EA, Mendel DA, Holloway JA. Implant screw mechanics. Dent Clin North Am 1998;42:71-89
  13. Burguete RL, Johns RB, King T, Patterson EA. Tightening characteristics for screwed joints in osseointegrated dental implants. J Prosthet Dent 1994;71:592-9 https://doi.org/10.1016/0022-3913(94)90443-X
  14. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-9
  15. Jaarda MJ, Razzoog ME, Gratton DG. Comparison of 'Look-Alike' implant prosthetic retaining screws. J Prosthodont 1995;4:23-7 https://doi.org/10.1111/j.1532-849X.1995.tb00310.x
  16. Binon P, Franz, Brunski J, Gulbransen H. The role of screws in implant systems. Int J Oral Maxillofac Implants. 1994;9:48-63
  17. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-7
  18. Weiss EI, Kozak D, Gross MD. Effect of repeated closures on opening torque values in seven abutment-implant systems. J Prosthet Dent 2000;84:194-9 https://doi.org/10.1067/mpr.2000.108069
  19. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36
  20. Griffith HT. Suggested tightening torques for structural bolts. Fastener Technology/ February 1987
  21. Shin HM, Jeong CM. Influence of tightening torque on implant - abutment screw joint stability. J Korean Acad Prosthodont 2008;46:396-408
  22. Lin CL, Wang JC. Nonlinear finite element analysis of a splinted implant with various connectors and occlusal Forces. Int J Oral Maxillofac Implants 2003;18:331-40
  23. Kang TH. Kim SG. Finite element stress analysis according to apical-coronal implant position. J Korean Oral Maxillofac Surg 2006;32:52-9
  24. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26
  25. Sakaguchi RL, Borgersen SE. Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implants 1995;10:295-302
  26. Genna F. Shakedown self-stresses, and unilateral contact in a dental implant problem. J Euromchsol 2004;23:485-98 https://doi.org/10.1016/j.euromechsol.2004.01.001
  27. Ekici B. Numerical analysis of a dental implant system in three-dimension. Advances in Engineering Software 2002;33:109-13 https://doi.org/10.1016/S0965-9978(01)00056-4
  28. Alkan I, Sertgo¨z A, Ekici B. Inflence of occlusal forces on stress distribution in preload dental implant screws. J Prosthet Dent 2004;91:319-25 https://doi.org/10.1016/j.prosdent.2004.01.016
  29. Boyer R, Welsch G, Collings EW. Materials properties handbook : Titanium alloys. ASM International : Materials Park, 1994
  30. John M, Tim H. Structural alloys handbook. West Lafayette: CINDAS, 1996
  31. O'Brien WJ. Dental materials and their selection. 2nd ed. Chicago: Quintessence, 1997
  32. Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative Materials used in implant occlusal surfaces. J Prosthet Dent 1992:361-4 https://doi.org/10.1016/0022-3913(92)90247-8
  33. Jeong CM, Lee HY. A finite element stress analysis of the stress distribution and the shock absorption in an osseointegrated implant-natural tooth supported fixed partial denture. J Korean Acad Prosthodont 1992;30:493-521
  34. Davis JR. Concise Metals Handbook. ASM International, 1997
  35. Gibb CH, Mahan PE, Mauderli A, Lundeen HC. Walsh EK. Limits of human bite strength. J Prosthet Dent 1986;56:226-9 https://doi.org/10.1016/0022-3913(86)90480-4
  36. ISO/DIS 14801. Dentistry-Fatigue test for endosseous dental implants. International Organization for Standardization, 2005
  37. Lee YB, Chang HS. Synthetic machine design. CMG book, 2001;112-6
  38. Lazzara RJ. Criteria for implant selection: surgical and prosthetic considerations. Pract Periodontics Aesthet Dent 1994;6:55-62
  39. Patterson EA, Johns RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 1992;7:26-34
  40. Lang LA, Kang B, Wang R, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent 2003;90:539-46 https://doi.org/10.1016/j.prosdent.2003.09.012
  41. David DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85:47-52 https://doi.org/10.1067/mpr.2001.112796