Screw Joint Stability under Cyclic Loading of Zirconia Implant Abutments

지르코늄 임플란트 지대주의 나사결합부 안정성에 관한 연구

  • Lee, Mi-Soon (Esthetic Restorative Dentistry, Korea University Graduate School of Clinical Dentistry, Korea University Institute for Clinical Dental Research) ;
  • Suh, Kyu-Won (Esthetic Restorative Dentistry, Korea University Graduate School of Clinical Dentistry, Korea University Institute for Clinical Dental Research) ;
  • Ryu, Jae-Jun (Esthetic Restorative Dentistry, Korea University Graduate School of Clinical Dentistry, Korea University Institute for Clinical Dental Research)
  • 이미순 (고려대학교 임상치의학 대학원 심미수복학과, 고려대학교 임상치의학 연구소) ;
  • 서규원 (고려대학교 임상치의학 대학원 심미수복학과, 고려대학교 임상치의학 연구소) ;
  • 류재준 (고려대학교 임상치의학 대학원 심미수복학과, 고려대학교 임상치의학 연구소)
  • Published : 2009.04.30

Abstract

Purpose: The purpose of this study was to evaluate the effect of abutment material on screw-loosening before and after cyclic loading. Among the different materials of abutments, zirconia and metal abutment were used. Material and methods: Two types of implant systems: external butt joint(US II, Osstem Implant, Korea) and internal conical joint(GS II, Osstem Implant, Korea) were used. In each type, specimens were divided into two different kinds of abutments: zirconia and metal(n=5). The implant was rigidly held in a special holding to device ensure fixation. Abutment was connected to 30 Ncm with digital torque gauge, and was retightened in 30 Ncm after 10 minutes. The initial removal torque values were measured. The same specimens were tightened in 30 Ncm again and held in the cycling loading simulator(Instron, USA) according to ISO/FPIS 1480. Cycling loading tests were performed at loads 10 to 250 N, for 1 million cycles, at 14 Hz,(by subjecting sinusoidal wave from 10 to 250 N at a frequency of 14 Hz for 1 million cycles,) and then postload removal torque values were evaluated. Results: 1. In all samples, the removal values of abutment screw were lower than tightening torque values(30 Ncm), but the phenomenon of the screw loosening was not observed. 2. In both of the implant systems, initial and postload removal torque of zirconia abutment were significantly higher than those of metal abutment(P<.05). 3. In both of the implant systems, the difference in removal torque ratio between zirconia abutment and metal abutment was not significant(P>.05). 4. In metal abutments, the removal torque ratio of GS II system(internal conical joint system) was lower than that of US II system(external butt joint system)(P<.05). 5. In zirconia abutments, the difference in removal torque ratio between the two implant systems was not significant(P>.05). Conclusion: Zirconia abutment had a good screw joint stability in the condition of one million cycling loading.

연구 목적: 심미적 장점을 지닌 지르코니아 지대주와 금속 지대주 사이에 반복 하중 전, 후의 풀림 회전력을 비교하여 지대주 재질에 따른 나사 안정성에 차이가 있는지를 비교 분석해 보고자 하는 것이다. 연구 재료 및 방법: 실험군은 크게 외측 연결 구조(US II, Osstem Implant, Korea)와 내측 연결 구조(GS II, Osstem Implant, Korea)의 임플란트 시스템을 두 군으로 나누었다. 각각의 군에서 지르코니아 지대주군와 금속 지대주군으로 나누어 실험하였다. 각군당5개씩의 시편을 제작하였다. 임플란트 고정체를 별도 제작된 지그에 고정시킨다. 디지털 토크게이지를 이용하여 30 Ncm의 조임 회전력을 가하고 10분 후 동일 조임 회전력을 한번 더 적용하였다. 다음 각 지대주 나사의 초기 풀림 회전력을 디지털 토크게이지로 측정하였다. 동일 시편을 다시 30 Ncm의 조임 회전력을 가하여 체결한 후, 유압식 동적 재료시험기(Instron, USA)에 임플란트 매식체를 치과용 임플란트 피로시험에 관한 ISO/FPIS 14801:2003(E)규정을 참고하여 고정시켰다. 최소 하중은 10 N, 최대 하중은 250 N의 sine형 반복 하중을 $30^{\circ}$의 경사각도로, 하중 주기는 14 Hz로, 100만 회의 반복 하중을 적용한 후 풀림 회전력을 측정하였다. 결과: 1. 모든 시스템에서 지대주 나사의 풀림 회전력이 조임 회전력 보다 감소하였으나, 나사 풀림 현상은 나타나지 않았다. 2. 반복 하중 전과 후의 나사 풀림 회전력은 두 임플란트 시스템 모두에서 지르코니아 지대주가 금속 지대주보다 더 컸다(P<.05). 3. 반복 하중에 따른 풀림 회전력 상실률은 두 임플란트 시스템 모두에서 지르코니아 지대주와 금속 지대주가 차이가 없는 것으로 나타났다(P>.05). 4. 금속 지대주에서 반복 하중에 따른 풀림 회전력 상실률은 내측 연결 형태의 GS II 시스템이 외측 연결형태의 US II 시스템보다 작았다(P<.05). 5. 지르코니아 지대주에서는 반복 하중에 따른 풀림 회전력 상실률은 두 임플란트 시스템 간에 차이가 없는 것으로 나타났다(P>.05). 결론: 본 실험을 통해 100만회 반복 하중 하에서 지르코니아 지대주가 금속 지대주에 비해 나사 결합부 안정성이 더 크다는 결론을 내릴 수 있다.

Keywords

References

  1. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  2. Rangert B, Jemt T, Jorneus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-7
  3. Binon P, Sutter F, Beaty K, Brunski J, Gulbransen H, Weiner R. The role of screws in implant systems. Int J Oral Maxillofac Implants 1994;9:48-63
  4. Kallus T, Bessing C. Loose gold screws frequently occur in full-arch fixed prostheses supported by osseointegrated implants after 5 years. Int J Oral Maxillofac Implants 1994;9:169-78
  5. Hemmings KW, Schmitt A, Zarb GA. Complications and maintenance requirements for fixed prostheses and overdentures in the edentulous mandible: a 5-year report. Int J Oral Maxillofac Implants 1994;9:191-6
  6. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. J Prosthet Dent 1990;64:185-94 https://doi.org/10.1016/0022-3913(90)90177-E
  7. Jemt T. Fixed implant-supported prostheses in the edentulous maxilla. A five-year follow-up report. Clin Oral Implants Res 1994;5:142-7 https://doi.org/10.1034/j.1600-0501.1994.050304.x
  8. Jemt T, Lekholm U. Implant treatment in edentulous maxillae: a 5-year follow-up report on patients with different degrees of jaw resorption. Int J Oral Maxillofac Implants 1995;10:303-11
  9. Jemt T, Laney WR, Harris D, Henry PJ, Krogh PH Jr, Polizzi G, Zarb GA, Herrmann I. Osseointegrated implants for single tooth replacement: a 1-year report from a multicenter prospective study. Int J Oral Maxillofac Implants 1991;6:29-36
  10. Naert I, Quirynen M, van Steenberghe D, Darius P. A sixyear prosthodontic study of 509 consecutively inserted implants for the treatment of partial edentulism. J Prosthet Dent 1992;67:236-45 https://doi.org/10.1016/0022-3913(92)90461-I
  11. Bickford JH. An introduction to the design and behavior of bolted joints. New York: Marcel Deckker.; 1981. p.247-64
  12. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implant-abutment interface after fatigue testing. J Prosthet Dent 2001;85:268-75 https://doi.org/10.1067/mpr.2001.114266
  13. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85:47-52 https://doi.org/10.1067/mpr.2001.112796
  14. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36
  15. Faulkner MG, Wolfaardt JF, Chan A. Measuring abutment/implant joint integrity with the Periotest instrument. Int J Oral Maxillofac Implants 1999;14:681-8
  16. Gross M, Abramovich I, Weiss EI. Microleakage at the abutment-implant interface of osseointegrated implants: a comparative study. Int J Oral Maxillofac Implants 1999;14:94-100
  17. Yildirim M, Edelhoff D, Hanisch O, Spiekermann H. Ceramic abutments--a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20:81-91
  18. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25 https://doi.org/10.1016/S0142-9612(98)00010-6
  19. Heydecke G, Sierraalta M, Razzoog ME. Evolution and use of aluminum oxide single-tooth implant abutments: a short review and presentation of two cases. Int J Prosthodont 2002;15:488-93
  20. Andersson B, Taylor A, Lang BR, Scheller H, Sch?rer P, Sorensen JA, Tarnow D. Alumina ceramic implant abutments used for single-tooth replacement: a prospective 1-to 3-year multicenter study. Int J Prosthodont 2001;14:432-8
  21. Cho HW, Dong JK, Jin TH, Oh SC, Lee HH, Lee JW. A study on the fracture strength of implant-supported restorations using milled ceramic abutments and all-ceramic crowns. Int J Prosthodont 2002;15:9-13
  22. Andresson B. Implants for single-tooth replacement. A clinical and experimental study on the Branemark CeraOne system. Swed Dent J Suppl. 1995;108:1-41
  23. Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003;90:325-31 https://doi.org/10.1016/S0022-3913(03)00514-6
  24. Shin HM, Jeong CM, Jeon YC, Jeong HC, Eom TG. Influence of tightening torque on implant-abutment screw joint stability. [MS dissertation.] Korea: Pusan National University; 2007
  25. Siamos G, Winkler S, Boberick KG. Relationship between implant preload and screw loosening on implant-supported prostheses. J Oral Implantol 2002;28:67-73 https://doi.org/10.1563/1548-1336(2002)028<0067:TRBIPA>2.3.CO;2
  26. ISO/FDIS 14801 Dentistry - Fatigue test for endosseous dental implants, International Organization for Standardization, 2003(E)
  27. Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16
  28. Prestipino V, Ingber A. Esthetic high-strength implant abutments. Part I. J Esthet Dent 1993;5:29-36 https://doi.org/10.1111/j.1708-8240.1993.tb00741.x
  29. Prestipino V, Ingber A. Esthetic high-strength implant abutments. Part II. J Esthet Dent 1993;5:63-8 https://doi.org/10.1111/j.1708-8240.1993.tb00750.x
  30. Prestipino V, Ingber A. All-ceramic implant abutments: esthetic indications. J Esthet Dent 1996;8:255-62 https://doi.org/10.1111/j.1708-8240.1996.tb00876.x
  31. Scherrer SS, Kelly JR, Quinn GD, Xu K. Fracture toughness (KIc) of a dental porcelain determined by fractographic analysis. Dent Mater 1999;15:342-8 https://doi.org/10.1016/S0109-5641(99)00055-X
  32. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Sche'rer P. Experimental zirconia abutments for implantsupported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont 2004;17:285-90
  33. Gehrke P, Dhom G, Brunner J, Wolf D, Degidi M, Piattelli A. Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening. Quintessence Int 2006;37:19-26
  34. Butz F, Heydecke G, Okutan M, Strub JR. Survival rate, fracture strength and failure mode of ceramic implant abutments after chewing simulation. J Oral Rehabil 2005;32:838-43 https://doi.org/10.1111/j.1365-2842.2005.01515.x
  35. Att W, Kurun S, Gerds T, Strub JR. Fracture resistance of single-tooth implant-supported all-ceramic restorations: an in vitro study. J Prosthet Dent 2006;95:111-6 https://doi.org/10.1016/j.prosdent.2005.12.003
  36. Korioth TW, Cardoso AC, Versluis A. Effect of washers on reverse torque displacement of dental implant gold retaining screws. J Prosthet Dent 1999;82:312-6 https://doi.org/10.1016/S0022-3913(99)70086-7
  37. Mcglumphy EA. Keeping implant screws tight : the solution. J Dent Symp. 1993 Aug;1:20-3
  38. Adrian ED, Krantz WA, Ivanhoe JR, Turner KA. A silicone obturator for the access canal in an implant-retained fixed prosthesis. J Prosthet Dent 1991;65:597 https://doi.org/10.1016/0022-3913(91)90306-H
  39. Kirkwood WF, Feng WW, Scott RG, Streit RD, Goldberg A. Mechanical properties and science of engineering materials. In: Blake A[ed]. Handbook of Mechanics, Materials, and Structures. London: Wiley, 1985:320-8
  40. Leempoel PJ, Van't Hof MA, de Haan AF. Survival studies of dental restorations: criteria, methods and analyses. J Oral Rehabil 1989;16:387-94 https://doi.org/10.1111/j.1365-2842.1989.tb01355.x
  41. Mericske-Stern R, Zarb GA. In vivo measurements of some functional aspects with mandibular fixed prostheses supported by implants. Clin Oral Implants Res 1996;7:153-61 https://doi.org/10.1034/j.1600-0501.1996.070209.x
  42. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108
  43. Carlsson GE, Haraldson T. Functional response in tissueintegrated prosthesis, 4th ed. Quintessence Publ, co, 1986:74-78
  44. Bates JF, Stafford GD, Harrison A. Masticatory function - a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil 1976;3:57-67 https://doi.org/10.1111/j.1365-2842.1976.tb00929.x
  45. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108
  46. Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66 https://doi.org/10.1016/S0022-3913(99)70243-X
  47. Weiss EI, Kozak D, Gross MD. Effect of repeated closures on opening torque values in seven abutment-implant systems. J Prosthet Dent 2000;84:194-9 https://doi.org/10.1067/mpr.2000.108069
  48. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-9
  49. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26
  50. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implant-abutment interface after fatigue testing. J Prosthet Dent 2001;85:268-75 https://doi.org/10.1067/mpr.2001.114266
  51. Binon PP. Evaluation of machining accuracy and consistency of selected implants, standard abutments, and laboratory analogs. Int J Prosthodont 1995;8:162-78
  52. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000;11:156-8 https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  53. Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 2000;15:76-94
  54. Leempoel PJ, Van't Hof MA, de Haan AF. Survival studies of dental restorations: criteria, methods and analyses. J Oral Rehabil 1989;16:387-94 https://doi.org/10.1111/j.1365-2842.1989.tb01355.x
  55. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Rest Dent 1993;13:409-31
  56. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995;73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7