DOI QR코드

DOI QR Code

열가소성 폴리머 필름의 마이크로 점착 거동에 대한 온도의 영향

Effect of Temperature on the Micro-scale Adhesion Behavior of Thermoplastic Polymer Film

  • 김광섭 (한국기계연구원 나노융합기계연구본부) ;
  • 허정철 (한국과학기술원 기계항공시스템학부) ;
  • 김경웅 (한국과학기술원 기계항공시스템학부)
  • 발행 : 2009.04.30

초록

Adhesion tests were carried out in order to investigate the effect of temperature on the adhesion behavior between a PMMA film and a fused silica lens in the micro scale. For the tests, a microtribometer system was specially designed and constructed. The pull-off forces on the PMMA film were measured under atmospheric condition as the temperature of the PMMA film was increased from 300 K to 443 K and decreased to 300 K. The contact area between the PMMA film and the lens was observed during the test. The adhesion behavior was changed with the change of the PMMA surface state as the temperature increased. In glassy state below 363 K, the pull-off force did not change with the increase of temperature. In rubbery state from 383 K to 413 K, the pull-off force increased greatly as the temperature increased. In addition, the area of contact was enlarged. In viscous state above 423 K, the fingering instability was observed in the area of contact when the PMMA film contacted with the lens. It was also found that the adhesion behavior can be varied with the thermal history of the PMMA film. The residual solvent in the PMMA film could emerge to the PMMA surface due to the heating and reduced the pull-off force.

키워드

참고문헌

  1. Chou, S.Y., Krauss, P.R. and Renstrom, P.J., 'lmprint of sub-25nm vias and trenches in polymers,' Applied Physics Lettcrs, Vol. 67, No. 21, pp. 3114-3116, 1995 https://doi.org/10.1063/1.114851
  2. Chou, S.Y., Krauss, P.R. and Renstrom, P.J., 'Nanoimprint lithography,' Joumal of Vacuum Science and Technology B, Vol. 14, No. 6, pp. 4129-4133, 1996 https://doi.org/10.1116/1.588605
  3. Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L.J. and Zhuang, L., 'Sub-lO nm imprint lithography and applicatíons,' Joumal of Vacuum Science and Technology B, Vol. 15, pp. 2897-2904, 1997 https://doi.org/10.1116/1.589752
  4. Austin, M.D., Ge, H., Wu, W., Li, M., Yu, Z., Wasserman, D., Lyon, S.A. and Chou, S.Y., 'Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,' Applied Physics Letters, Vol. 84, No. 26, pp‘ 5299-5301, 2004 https://doi.org/10.1063/1.1766071
  5. Zhang, W. and Chou, S.Y., 'Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,' Applied Physics Letters, Vol. 83, No. 8, pp. 1632-1634, 2003 https://doi.org/10.1063/1.1600505
  6. Chao, C. and Guo, L.J., 'Polymer microring resonators fabricated by nanoimprint technique,' Joumal of Vacuum Science and Technology B, Vol. 20, No. 6, pp.2862-2866, 2002 https://doi.org/10.1116/1.1521729
  7. Arakcheeva, E.M., Tanklevskaya, E.M., Nesterov, S.I., Maksimov, M.Y., Gurevich, and S.A., Seekamp, J., Torres, C.M.S., 'Fabrication of semiconductorand polymer-based photonic crystals using nanoimprint lithography,' Technical Physics, Vol. 50, no. 8, pp. 1043-1047, 2005 https://doi.org/10.1134/1.2014536
  8. Chεng, x., Hong, Y.T., Kanicki, J., and Guo, L.J., 'High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,' Journal of Vacuum Science and Technology B, Vol. 20, No. 6, pp. 2877-2880, 2002 https://doi.org/10.1116/1.1515307
  9. Kao, P.C., Chu, S.Y., Chen, T.Y., Zhan, C.Y., Hong, F.C., Chang, c.Y., Hsu, L.C., Liao, W.C., and Hon, M.H., 'Fabrication of large-scaled organic light emitting devices on the flexible substrates using 10wpressure imprinting Iithography,' IEEE Transactions on Electrical Devices, Vol. 52, No. 8, pp. 1722-1726, 2005 https://doi.org/10.1109/TED.2005.851811
  10. Ahn S W, Lee K D, Kim J S, Kim S H, Park J D, Lee S H and Yoon P W, ' Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint Iithography,' Nanotechnology, Vol. 16, No. 9, pp. 1874-1877, 2005 https://doi.org/10.1088/0957-4484/16/9/076
  11. Hirai, Y., Yoshida, S., and Takagi, N., 'Defect analysis in thermal nanoimprint lithography,' Journal of Vacuum Science and Technology B, Vol. 21, No. 6, pp. 2765-2770, 2003 https://doi.org/10.1116/1.1629289
  12. Hirai, Y., Yoshida, S., Takagi, N., Tanaka, Y., Yabe, H., Sasaki, K., Sumitani, H., and Yamamoto, K., 'High Aspect Pattem Fabrication by Nano Imprint Lithography Using Fine Diamond Mold,' Japanese Joumal of Applied Physics Part 1, Vol. 42, pp. 3863-3866, 2003 https://doi.org/10.1143/JJAP.42.3863
  13. Kang, J.JT., Kim, K.S., and Kim, K.W., 'Molccular dynamics study of pattem transfer in nanoimprint lithography,' Tribology Letters, Vol. 25, No. 2, pp. 93-102, 2007 https://doi.org/10.1007/s11249-006-9053-4
  14. Jaszewski, R. w., Schift, H., Groning, P., and Margaritondo, G, 'Properties of thin anti-adhesive films used for the replication of microstructures in polymers,' Microelectronic Engineering, Vol. 45, No. 1-4, pp. 381-384, 1997
  15. Bailey, T., Choi, B.J., Colbum, M., Meissl, M., Shaya, S., Ekerdt, J.G, Sreenivasan, S.V., and WiIlson, C. G, 'Step and flash imprint lithography: Template surface treatment and defect analysis,' Joumal of Vacuum Science and Technology B, Vol. 18, No. 6, pp. 3572-3577, 2000 https://doi.org/10.1116/1.1324618
  16. Beck, M., Graczyk, M., Maximov. I., Sarwe, E. L., T. G. I. Ling, Keil, M., and Montelius, L., 'Improving stamps for 10 nm level wafer scale nanoimprint lithography,' Microelectronic Engineering, Vol. 61-62, pp. 441-448, 2002 https://doi.org/10.1016/S0167-9317(02)00464-1
  17. Jung, GY., Li, Z., Wu, W., Chen, Y., Olynick, D.L., Wang, S.Y., Tong, W.M., and Williams, R.S., 'Vapor-phase self-assemblcd monolayer for improved mold release in nanoimprint Iithography,' Langmuir, Vol. 21. pp. 1158-1161, 2005 https://doi.org/10.1021/la0476938
  18. Schift, H., Saxer, S., Park, S. G, Padeste, C., Pieles, U., and Gobrecht, J., 'Controlled co-evaporation of silanes for nanoimprint stamps,' Nanotechnology, Vol. 16, pp. S171-S175, 2005 https://doi.org/10.1088/0957-4484/16/5/007
  19. Chen, J. K., Ko, F. H., Hsieh, K. F., Chou, C. T., and Chang, F. C., 'Effect of fluoroalkyl substítuents on thc rcactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,' Joumal of Vacuum Scíence and Technology B, Vol. 22, No. 6, pp. 3233-3241 , 2004 https://doi.org/10.1116/1.1815305
  20. Park, S. G., Schift, H., Padeste, c., Schnyder, B., Kotz, R., and Gobrecht, Jens., ' Anti-adhcsivε layers on nickel stamps for nanoimprint lithography,' Microelectronic Engineering, Vol. 73-74, pp. 196-201, 2004 https://doi.org/10.1016/S0167-9317(04)00098-X
  21. Kim, K.S., Kang, J.H., and Kim, K.W., 'Adhesion characteristics between mold and thennoplastic polymer film in thennal nanoimprint lithography,' Tribology Letters, submitted, 2008
  22. Choi, D.G., Jeong, J.H., Sim, Y.S., Lee, E.S., Kim, W.S., and Bae, B.S., ' Fluorinated organic-inorganie hybrid mold as a new stamp for nanoimprínt and 50ft Iithography,' Langmuir, Vol. 21, No. 21 , pp. 9390-9392, 2005 https://doi.org/10.1021/la0513205
  23. Tambe, N.S., and ßhushan, B., 'Scalc dependence of micro/nano-friction and adhesion of MEMSINEMS materials, coatings and lubricants,' Nanotechnology, Vol. 15, pp. 1561-1570, 2004 https://doi.org/10.1088/0957-4484/15/11/033
  24. Tambe, N.S., and Bhushan, B., 'Durability studies of micro/nanoeleetromechanical systems materials, coatings and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope,' Joumal of Vacuum Science and Technology B, Vol. 23, No. 4, pp. 830-835, 2005 https://doi.org/10.1116/1.1843821
  25. Tambe, N. S., and Bhushan, B., 'Micro/nanotribological characterization of POMS and PMMA used for BioMEMSINEMS applications,' Ultramicroscopy, Vol. 105, pp. 238-247, 2005 https://doi.org/10.1016/j.ultramic.2005.06.050
  26. Bhushan, B., and Burton, Z., 'Adhesion and friction properties of polymεrs in microf1uidic dεvices,' Nanotechnology, Vol. 16, pp. 467-478, 2005 https://doi.org/10.1088/0957-4484/16/4/023
  27. Hammerschmidt, J.A., Gladfelter, W. L., and Haugstad, G., 'Probíng polymer viscoelastic relaxations with tεmperature-controlled friction force microscopy,' Macromolecules, Vol. 32, No. 10, pp.3360-3367, 1999 https://doi.org/10.1021/ma981966m
  28. Wang, X.P., Tsui, O.K.C., and Xiao, X., 'Oynamic study of polymer films by frictíon torce microscopy with continuously varying load,' Langmuir, Vol. 18, pp. 7066-7072, 2002 https://doi.org/10.1021/la020270q
  29. Tsui, O.K.C, Wang, X.P., Ho, J.Y.L., Ng, T.K., and Xiao, X., 'Studying surface glass-to-rubber transition using atomic force microscopic adhesion measurements,' Macromolecules, Vol. 33, pp. 4198-4204, 2000 https://doi.org/10.1021/ma991473x
  30. Luengo, G., Pan, J., Heuberger, M., and Israclach vili, J.N., 'Temperatmε and time effects on the adhesion dynamics of poly(butyl mεthacrylate) (PBMA) surfaces,' Langmuir, Vol. 14, No. 14. pp.3873-3881, 1998 https://doi.org/10.1021/la971304a
  31. Zeng, H., Maeda, N., Chen, N., Tirrell, M., and Israelachvili, J., 'Adhesion and friction of polystyrene surfaces around $T_g$,' Macromolecules, Vol. 39, pp. 2350-2363, 2006 https://doi.org/10.1021/ma052207o
  32. Pocius, A.Y.: Adhesion and Adhesives Technology: An Introduction, Hanser/Cardner Publications, Inc., New York (1997)
  33. Kim, K.S, Ando, Y., and Kim, K.W., 'The effect of temperature on thc nano-scale adhesion and fríetion behaviors of thennoplastíe polymer films,' Nanotechnology, Vol. 19, pp. 105701, 2008 https://doi.org/10.1088/0957-4484/19/10/105701
  34. Callister, W.D., Material science and engineering: an introduction, 5th edition, John Wiley & Sons, Inc., 2000, pp. 791-796
  35. Wei, G., Bhushan, B., Fe1Tell, N., and Hansford, D., 'Microfabrication and nanomechanical characterization of polymer microelectromechanical system for biological app\i cations,' Joumal of Vacumn Science and Technology B, Vol. 23, No. 4, pp. 811-819, 2005
  36. Sigma-Aldrich hompage, www.sigma-aldrich.com
  37. Christenson, H.K., 'Adhesion betwcen surfacesn undersaturated vapors-a reexamination of 'the influence ofmeniscus curvature and surface forces,' Journal of Colloid and Interface Science, Vol.121, No.1 , pp. 170-178, 1988 https://doi.org/10.1016/0021-9797(88)90420-1
  38. Saftìnan, P.G., and Taylor, G., 'The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous Iiquid,' Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 245, No. 1242, pp. 312-329, 1958 https://doi.org/10.1098/rspa.1958.0085
  39. Zeng, H., Tian, Y., Zhao, B., Tirrell, M., and Israelachvili, J., 'Transient interfacial pattems and instabilities associated with liquid film adhesion and spreading,' Langmuir, Vol. 23, pp. 6126-6135, 2007 https://doi.org/10.1021/la0632979
  40. Mary, P., Chateauminois, A., and Fretigny, C., 'Deformation of elastic coatings in adhesive contacts with spherical probes,' Journal of Physics D: Applied Physics, Vol. 39, pp. 3665-3673, 2006 https://doi.org/10.1088/0022-3727/39/16/021
  41. Zeng, H., Tian, Y., Zhao, B., Tirrell, M., and Israelachvili, J., 'Transient surface pattems and instabilities at adhesive junctions of viscoelastic films,' Langmuir, Vol. 23, pp. 6126-6135, 2007 https://doi.org/10.1021/la0632979
  42. Bistac, S., and Schultz, J., 'Study of soIution-cast films of PMMA by dielectric spectroscopy: influence of the nature of the solvent on a and b relaxations,' lnternational Journal of Adhesion and Adhesives, Vol. 17, No. 3, pp. 197-201, 1997 https://doi.org/10.1016/S0143-7496(97)00001-8
  43. Kim, K.S., Heo, J.C., and Kim, K.W., 'Effect of temperature on the friction behavior of thermoplas-tic polymer film,' in preparation

피인용 문헌

  1. 대체연료로서 바이오디젤의 윤활성 vol.26, pp.1, 2009, https://doi.org/10.9725/kstle.2010.26.1.078
  2. 유동점 강하제에 의한 바이오디젤 저온특성 향상 vol.27, pp.2, 2009, https://doi.org/10.9725/kstle.2011.27.2.109