Inhibitory Effect of Lactobacillus plantarum K11 on the Adhesion of Escherichia coli O157 to Caco-2 Cells

  • Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University) ;
  • Ahn, Dong-Hyun (Department of Food Science and Technology, Pukyong National University) ;
  • Im, Dong-Soon (College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Published : 2009.04.30

Abstract

Inhibitory effect of Escherichia coli O157 adhered to Caco-2 cells by the cells of Lactobacillus plantarum K11 and the cell-free culture supernatant (CFCS) and bacteriocin prepared from this strain was investigated. As the cell counts of viable L. plantarum K11 previously adhered to Caco-2 were increased, the rate of adhesion and adherent cell counts of E. coli O157 was lower. However, because the heated L. plantarum K11 rarely have the adhesion ability to Caco-2, the adhesion rate and adherent cell counts of E. coli O157 were high. In addition, the inhibitory effects of E. coli O157 adhesion by the CFCS and bacteriocin of L. plantarum K11 were dose-dependent manner. Therefore, the inhibition of adhesion of E. coli O157 to Caco-2 may result from the antimicrobial substances such as lactic acid and bacteriocin. Moreover the inhibitory activity of adhesion by the heated bacteriocin for 30 min at 100oC was similar to activity of non-treated bacteriocin, but the activity was disappeared by treatment with protease.

Keywords

References

  1. Fuller R. Probiotics in man and animals. J. Appl. Bactericol. 66:365-371 (1988)
  2. Fuller R. Probiotics in human medicine. Gut 32: 439-442 (1991) https://doi.org/10.1136/gut.32.4.439
  3. Gordin BR, Gorbach SL. Probiotics for humans. pp. 355-376. In:Probiotics. The Scientific Basis. Fuller R (ed). Chapman and Hall, London, UK (1992)
  4. Majamaa H, Isolauri E. Probiotics: A novel approach in the management of food allergy. J. Allergy Clin. Immun. 99: 179-185 (1997) https://doi.org/10.1016/S0091-6749(97)70093-9
  5. Betsi GI, Papadavid E, Falagas ME. Probiotics for the treatment or prevention of atopic dermatitis: A review of the evidence from randomized controlled trials. Am. J. Clin. Dermatol. 9: 93-103 (2008) https://doi.org/10.2165/00128071-200809020-00002
  6. Yasui H, Shida K, Matsuzaki T, Yokokura T. Immunomodulatory function of lactic acid bacteria. Anton Leeuw. Int. J. G. 76: 383-389 (1999) https://doi.org/10.1023/A:1002041616085
  7. Matsuzaki T, Chin J. Modulating immune responses with probiotic bacteria. Immunol. Cell Biol. 78: 67-73 (2000) https://doi.org/10.1046/j.1440-1711.2000.00887.x
  8. Taranto MP, Medici M, Perdigon G, Ruiz Holgado AP, Valdez GF. Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J. Dairy Sci. 81: 2336-2340 (1998) https://doi.org/10.3168/jds.S0022-0302(98)70123-7
  9. Park YH, Kim JG, Shin YW, Kim SH, Whang KY. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechn. 17: 655-660 (2007)
  10. Rafter J. Lactic acid bacteria and cancer: Mechanistic perspective. Brit. J. Nutr. 88: S89-S94 (2002) https://doi.org/10.1079/BJN2002633
  11. Oh SJ, Lee JH, Kim GT, Shin JG, Baek YJ. Anti-cariogenic activity of a bacteriocin produced by Lactococcus sp. HY 449. Food Sci. Biotechnol. 12: 9-12 (2003)
  12. de Moreno de LeBlanc A, Matar C, Perdigon G. The application of probiotics in cancer. Brit. J. Nutr. 98: S105-S110 (2007)
  13. Felley CP, Corthesy-Theulaz I, Rivero JL, Sipponen P, Kaufmann M, Bauerfeind P, Wiesel PH, Brassart D, Pfeifer A, Blum AL, Michetti P. Favorable effect of an acidified milk (LC-1) on Helicobacter pylori gastritis in man. Eur. J. Gastroen. Hepat. 13: 25-29 (2001) https://doi.org/10.1097/00042737-200101000-00005
  14. Coconnier MH, Lievin V, Hemery E, Servin AL. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl. Environ. Microb. 64: 4573-4580 (1998)
  15. Rolfe RD. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130: 396S-402S (2000) https://doi.org/10.1093/jn/130.2.396S
  16. Ocana VS, Elena Nader-Macias M. Production of antimicrobial substances by lactic acid bacteria: Screening bacteriocin-producing strains with probiotic purposes and characterization of a Lactobacillus bacteriocin. Methods Mol. Biol. 268: 347-353 (2004)
  17. Nes IF, Yoon SS, Diep DB. Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: A review. Food Sci. Biotechnol. 16: 675-690 (2007)
  18. Bernet MF, Brassart D, Neeser JR, Servin AL. Adhesion of human Bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interaction. Appl. Environ. Microb. 59: 4121-4128 (1993)
  19. Tuomola EM, Ouwehand AC, Salminen SJ. The effect of probiotics bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol. Med. Mic. 26: 137-142 (1999) https://doi.org/10.1111/j.1574-695X.1999.tb01381.x
  20. Vesterlund S, Karp M, Salminen S, Ouwehand AC. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152: 1819-1826 (2006) https://doi.org/10.1099/mic.0.28522-0
  21. Lim SM, Im DS. Bactericidal effect of bacteriocin of Lactobacillus plantarum K11 isolated from dongchimi on Escherichia coli O157. J. Food. Hyg. Saf. 22: 151-158 (2007)
  22. Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173: 3879-3887 (1991) https://doi.org/10.1128/jb.173.12.3879-3887.1991
  23. Gopal PK, Prasad J, Smart J, Gill HS. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food Microbiol. 67: 207-216 (2001) https://doi.org/10.1016/S0168-1605(01)00440-
  24. Ouwehand AC, Kirjavainen PV, Gronlund MM, Isolauri E, Salmin SJ. Adhesion of probiotic microorganisms to intestinal mucus. Int. Dairy J. 9: 623-630 (1999) https://doi.org/10.1016/S0958-6946(99)00132-6
  25. Suegara N, Morotomi M, Watanabe T, Kawai Y, Mutai M. Behavior of microflora in the rate stomach: Adhesion of Lactobacilli to the keratinized epithelial cells of the rat stomoach in vitro. Infect. Immun. 12: 173-179 (1975)
  26. Forestier C, de Champs C, Vatoux C, Joly B. Probiotic activities of Lactobacillus casei rhamnosus: In vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152: 167-173 (2001) https://doi.org/10.1016/S0923-2508(01)01188-3
  27. Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PSC, Goulet J, Tompkins TA. Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect. Immun. 73: 5183-5188 (2005) https://doi.org/10.1128/IAI.73.8.5183-5188.2005
  28. Hirano J, Yoshida T, Sugiyama T, Koide N, Mori I, Yokochi T. The effect of Lactobacillus rhamnosus on enterohemorrhagic Escherichia coli infection of human intestinal cells in vitro. Microbiol. Immunol. 47: 405-409 (2003) https://doi.org/10.1111/j.1348-0421.2003.tb03377.x
  29. Lee YK, Puong KY, Ouwehand AC, Salminen S. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52: 925-930 (2003) https://doi.org/10.1099/jmm.0.05009-0
  30. Lee YK, Puong KY. Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Brit. J. Nutr. 88: S101-S108 (2002) https://doi.org/10.1079/BJN2002635
  31. Tuomola EM, Salminen SJ. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41: 45-51 (1998) https://doi.org/10.1016/S0168-1605(98)00033-6
  32. Miyoshi Y, Okada S, Uchimura T, Satoh E. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci. Biotech. Bioch. 70: 1622-1628 (2006) https://doi.org/10.1271/bbb.50688
  33. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827-833 (2003) https://doi.org/10.1136/gut.52.6.827
  34. Reid G, Servin AL, Bruce AW, Busscher HJ. Adhesion of three Lactobacillus strains to human urinary and intestinal epithelial cells. Microbios 75: 57-65 (1993)
  35. Zareba TW, Pascu C, Hryniewicz W, Waldstrom T. Binding of extracellular matrix proteins by enterococci. Curr. Microbiol. 34: 6-11 (1997) https://doi.org/10.1007/s002849900135
  36. Schillinger U, Guigas C, Holzapfel WH. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int. Dairy J. 15: 1289-1297 (2005) https://doi.org/10.1016/j.idairyj.2004.12.008
  37. Schaer-Zammaretti P, Ubbink J. Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97: 199-208 (2003) https://doi.org/10.1016/S0304-3991(03)00044-5
  38. Azuma U, Sato M. Lactobacillus casei NY1301 increased the adhesion of Lactobacillus gasseri NY0509 to human intestinal Caco-2 cells. Biosci. Biotech. Bioch. 65: 2326-2329 (2001) https://doi.org/10.1271/bbb.65.2326
  39. Collado MC, Jalonen L, Meriluoto J, Salminen S. Protection mechanism of probiotic combination against human pathogens: In vitro adhesion to human intestinal mucus. Asia Pac. J. Clin. Nutr. 15: 570-575 (2006)
  40. Collins MD, Gibson GR. Probiotics, prebiotics, and symbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69: 1052S-1057S (1999) https://doi.org/10.1093/ajcn/69.5.1052s
  41. Lehto EM, Salminen SJ. Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: Only a pH effect? FEMS Immunol Med. Mic. 18:125-132 (1997) https://doi.org/10.1111/j.1574-695X.1997.tb01037.x
  42. Jin LZ, Marquardt RR, Zhao X. A strain of Enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Appl. Environ. Microb. 66: 4200-4204 (2000) https://doi.org/10.1128/AEM.66.10.4200-4204.2000
  43. Heinemann C, van Hylckama Vlieg JE, Janssen DB, Busscher HJ, van der Mei HC, Reid G. Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol. Lett. 190: 177-180 (2000) https://doi.org/10.1111/j.1574-6968.2000.tb09282.x
  44. Baccigalupi L, Donato AD, Parlato M, Luongo D, Carbone V, Rossi M, Ricca E, de Felice M. Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. Res. Microbiol. 156: 830-836 (2005) https://doi.org/10.1016/j.resmic.2005.05.001
  45. Coconnier MH, Klaenhammer TR, Kerneis S, Bernet MF, Servin AL. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microb. 58: 2034-2039 (1992)
  46. Trejo FM, Minnaard J, Perez PF, de Antoni GL. Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants. Anaerobe 12: 186-193 (2006) https://doi.org/10.1016/j.anaerobe.2006.03.004
  47. Rojas M, Ascencio F, Conway PL. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl. Environ. Microb. 68: 2330-2336 (2002) https://doi.org/10.1128/AEM.68.5.2330-2336.2002
  48. Sun J, Le GW, Shi YH, Su GW. Factors involves in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett Appl. Microbiol. 44: 79-85 (2007) https://doi.org/10.1111/j.1472-765X.2006.02031.x
  49. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A, Brassart D. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microb. 65:1071-1077 (1999)