Purification and Characterization of a Subtilisin D5, a Fibrinolytic Enzyme of Bacillus amyloliquefaciens DJ-5 Isolated from Doenjang

  • Choi, Nack-Shick (Enzyme Based Fusion Technology Research Team, Jeonbuk Branch Institute, Korea Research Institute Bioscience & Biotechnology (KRIBB)) ;
  • Chung, Dong-Min (Systemic Proteomics Research Center, Korea Research Iinstitute Bioscience & Biotechnology (KRIBB)) ;
  • Han, Yun-Jon (Enzyme Based Fusion Technology Research Team, Jeonbuk Branch Institute, Korea Research Institute Bioscience & Biotechnology (KRIBB)) ;
  • Kim, Seung-Ho (Systemic Proteomics Research Center, Korea Research Iinstitute Bioscience & Biotechnology (KRIBB)) ;
  • Song, Jae-Jun (Enzyme Based Fusion Technology Research Team, Jeonbuk Branch Institute, Korea Research Institute Bioscience & Biotechnology (KRIBB))
  • Published : 2009.04.30

Abstract

The fibrinolytic enzyme, subtilisin D5, was purified from the culture supernatant of the isolated Bacillus amyloliquefaciens DJ-5. The molecular weight of subtilisin D5 was estimated to be 30 kDa. Subtilisin D5 was optimally active at pH 10.0 and $45^{\circ}C$. Subtilisin D5 had high degrading activity for the A$\alpha$-chain of human fibrinogen and hydrolyzed the $B{\beta}$-chain slowly, but did not affect the $\gamma$-chain, indicating that it is an $\alpha$-fibrinogenase. Subtilisin D5 was completely inhibited by phenylmethylsulfonyl fluoride, indicating that it belongs to the serine protease. The specific activity (F/C, fibrinolytic/caseinolytic activity) of subtilisin D5 was 2.37 and 3.52 times higher than those of subtilisin BPN' and Carlsberg, respectively. Subtilisin D5 exhibited high specificity for Meo-Suc-Arg-Pro-Tyr-pNA (S-2586), a synthetic chromogenic substrate for chymotrypsin. The first 15 amino acid residues of the N-terminal sequence of subtilisin D5 are AQSVPYGISQIKAPA; this sequence is identical to that of subtilisin NAT and subtilisin E.

Keywords

References

  1. Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. Strain CK 11-4 screened from cheonggukjang. Appl. Environ. Microb. 62: 2482-2488 (1996)
  2. Kim SH, Choi NS. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from doenjang. Biosci. Biotech. Bioch. 64: 1722-1725 (2000) https://doi.org/10.1271/bbb.64.1722
  3. Kim HK, Kim GT, Kim DK, Choi WA, Park SH, Jeong YK, Kong IS. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84: 307-312 (1997) https://doi.org/10.1016/S0922-338X(97)89249-5
  4. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet. Experientia 43: 1110-1111 (1987) https://doi.org/10.1007/BF01956052
  5. Sumi H, Hamada H, Nakanishi K, Hiratani H. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol.-Sasel. 84: 139-143 (1990) https://doi.org/10.1159/000205051
  6. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Bioph. Res. Co. 197: 1340-1347 (1993) https://doi.org/10.1006/bbrc.1993.2624
  7. Chang CT, Fan MH, Kuo FC, Sung HY. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J. Agr. Food Chem. 48: 3210-3216 (2000) https://doi.org/10.1021/jf000020k
  8. Sumi H, Nakajima N, Yatagai C. A unique strong fibrinolytic enzyme (Katsuwokinase) in Skipjack 'shiokara', a Japanese traditionall fermented food. Comp. Biochem. Phys. B 112: 543-547 (1995) https://doi.org/10.1016/0305-0491(95)00100-X
  9. Peng Y, Huang Q, Zhang R, Zhang Y. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douche, a traditional Chinese soybean food. Comp. Biochem. Phys. B 134: 45-52 (2003) https://doi.org/10.1016/S1096-4959(02)00183-5
  10. Kim SB, Lee DW, Cheigh CI, Choe EA, Lee SJ, Hong YH, Choi HJ, Pyun YR. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean. Tempeh. J. Ind. Microbiol. Biot. 33: 436-444 (2006) https://doi.org/10.1007/s10295-006-0085-4
  11. Kim SH, Choi NS, Lee WY, Lee JW, Kim DH. Isolation of Bacillus strains secreting fibrinolytic enzymes from doenjang. Korean J. Microbiol. 34: 87-90 (1998)
  12. Rochelle PA, Fry JC, Parkes RJ, Weightman AJ. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 100: 59-66 (1992) https://doi.org/10.1111/j.1574-6968.1992.tb05682.x
  13. Lane DJ. 16S/23S rRNA sequencing. pp. 115-175. In: Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt E, Goodfellow M (eds). John Wiley and Sons, New York, NY, USA (1991)
  14. Roberts MS, Nakamura LK, Cohan FM. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44: 256-264 (1994) https://doi.org/10.1099/00207713-44-2-256
  15. Felsenstein J. PHYLIP (phylogenetic inference package) version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA (1993)
  16. Jukes TH, Cantor CR. Evolution of protein molecules. pp. 21-132. In: Mammalian Protein Metabolism. Munro HN (ed). Academic Press, Inc., New York, NY, USA (1969)
  17. Chun J, Bae KS. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Anton. Leeuw. Int. J. G. 78: 123-127 (2000) https://doi.org/10.1023/A:1026555830014
  18. Chun J. Computer-assisted classification and identification of actinomycetes. PhD thesis, University of Newcastle, Newcastle upon Tyne, UK (1995)
  19. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425 (1987)
  20. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 (1985) https://doi.org/10.2307/2408678
  21. Asrup T, Müllertz S. The fibrin plate method for estimating fibrinolytic activity. Arch. Bioch. Biophys. 40: 346-351 (1952) https://doi.org/10.1016/0003-9861(52)90121-5
  22. Hung CC, Huang KF, Chiou SH. Characterization of one novel venom protease with $\beta$-fibrinogenase activity from the Taiwan habu (Trimeresurus mucrosquamatus): Purification and cDNA sequence analysis. Biochem. Bioph. Res. Co. 205: 1707-1715 (1994) https://doi.org/10.1006/bbrc.1994.2865
  23. Laemmli UK. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685 (1970) https://doi.org/10.1038/227680a0
  24. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membrane. J. Biol. Chem. 262: 10035-10038 (1987)
  25. Lu F, Sun L, Lu Z, Bie X, Fang Y, Liu S. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzyme. Curr. Microbiol. 54: 435-439 (2007) https://doi.org/10.1007/s00284-006-0591-7
  26. Matsubara K, Sumi H, Hori K, Miyazawa K. Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp. Biochem. Phys. B 119: 177-181 (1998) https://doi.org/10.1016/S0305-0491(97)00303-9
  27. Matsubara K, Hori K, Matsuura Y, Miyazawa K. A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52: 993-999 (1999) https://doi.org/10.1016/S0031-9422(99)00356-8
  28. Matsubara K, Hori K, Matsuura Y, Miyazawa K. Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp. Biochem. Phys. B 125: 137-143 (2000) https://doi.org/10.1016/S0305-0491(99)00161-3
  29. Takahashi M, Sekine T, Kuba N, Nakamori S, Yasuda M. The production of recombinant APRP, an alkaline protease derived from Bacillus pumilus TYO-67, by in vitro refolding of pro-enzyme fixed on a solid surface. J. Biochem. 136: 549-556 (2004) https://doi.org/10.1093/jb/mvh158
  30. Wang CT, Ji BP, Li B, Nout R, Li PL, Ji H, Chen LF. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional douchi. J. Ind. Microbiol. Biot. 33: 750-758 (2006) https://doi.org/10.1007/s10295-006-0111-6
  31. Wong SL, Price CW, Goldfarb DS, Doi RH. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma-37 promoter in vivo. P. Natl. Acad. Sci. USA 81: 1184-1188 (1984) https://doi.org/10.1073/pnas.81.4.1184
  32. Seo JH, Lee SP. Production of fibrinolytic enzyme (KK) from soybean grits fermented by Bacillus firmus NA-1. J. Med. Food 7:442-449 (2004) https://doi.org/10.1089/jmf.2004.7.442
  33. Siigur E, Aaspollu A, Tu AT, Siigur J. cDNA cloning and deduced amino acid sequence of fibrinolytic enzyme (lebetase) from Vipera lebetina snake venom. Biochem. Bioph. Res. Co. 224: 229-236 (1996) https://doi.org/10.1006/bbrc.1996.1012
  34. Lee JW, Seu JH, Rhee IK, Jin I. Purification and characterization of brevinase, a heterogeneous two-chain fibrinolytic enzyme from the venom of Korean snake, Agkistrodon blomhoffii brevicaudus. Biochem. Bioph. Res. Co. 260: 665-670 (1999) https://doi.org/10.1006/bbrc.1999.0977
  35. Simth EL, Delange RJ, Evans WH, Landon M. Subtilisin Carlsberg V. The complete sequence, comparison with subtilisin BPN', evolutionary relationships. J. Biol. Chem. 243: 2184-2191 (1968)