DOI QR코드

DOI QR Code

Bioprocess Development for Production of Alkaline Protease by Bacillus pseudofirmus Mn6 Through Statistical Experimental Designs

  • Abdel-Fattah, Y.R. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • El-Enshasy, H.A. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • Soliman, N.A. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications) ;
  • El-Gendi, H. (Bioprocess Development Department., Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications)
  • 발행 : 2009.04.30

초록

A sequential optimization strategy, based on statistical experimental designs, is employed to enhance the production of alkaline protease by a Bacillus pseudofirmus local isolate. To screen the bioprocess parameters significantly influencing the alkaline protease activity, a 2-level Plackett-Burman design was applied. Among 15 variables tested, the pH, peptone, and incubation time were selected based on their high positive significant effect on the protease activity. A near-optimum medium formulation was then obtained that increased the protease yield by more than 5-fold. Thereafter, the response surface methodology(RSM) was adopted to acquire the best process conditions among the selected variables, where a 3-level Box-Behnken design was utilized to create a polynomial quadratic model correlating the relationship between the three variables and the protease activity. The optimal combination of the major medium constituents for alkaline protease production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows: pH of 9.5, 2% peptone, and incubation time of 60 h. The predicted optimum alkaline protease activity was 3,213 U/ml/min, which was 6.4 times the activity with the basal medium.

키워드

참고문헌

  1. Abdel-Fattah, Y .R. and Z. A. Olama. 2002. L-Asparaginase produ3.ction by Pseudomonas aeruginosa in solid-state culture: Evaluation and optimization of culture conditions using factorial designs. Proc. Biochem. 38: 115-122 https://doi.org/10.1016/S0032-9592(02)00067-5
  2. Abdel-Fattah, Y. R., H. M. Saeed, Y. M. Gohar, and M. A. El-Baz. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Proc. Biochem. 40: 1707-1714 https://doi.org/10.1016/j.procbio.2004.06.048
  3. Anson, M. L. 1938. Estimation of pepsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79-89 https://doi.org/10.1085/jgp.22.1.79
  4. Anwar, A. and M. Saleemuddin. 1998. Alkaline proteases: A review. Biores. Technol. 64: 175-183 https://doi.org/10.1016/S0960-8524(97)00182-X
  5. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidam, J.A. Smith, and K. Struhl, K. (eds). 1999. Short Protocols in Molecular Biology. John Willey and Sons, Inc. NY
  6. Beg, Q. K., V. Sahai, and R. Gupta. 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Proc. Biochem. 39: 203-209 https://doi.org/10.1016/S0032-9592(03)00064-5
  7. Beg, Q.K., R. K. Saxena, and R. Gupta. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed batch operations. Process Biochem. 37: 1103-1109 https://doi.org/10.1016/S0032-9592(01)00320-X
  8. Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475 https://doi.org/10.2307/1266454
  9. Chang, Y.-N., J.-C. Huang, C.-C. Lee, I.-L. Shih, and Y.-M. Treng. 2002. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus rubber. Enz. Microbial Technol. 30: 889-894 https://doi.org/10.1016/S0141-0229(02)00037-6
  10. Denizci, A. A., D. Kazan, E. C. A. Abeln, and A. Erarslan. 2004. A newly isolated Bacillus clausii GMBAE 42: An alkaline protease producer capable to grow under highly alkaline conditions. J. Appl. Microbiol. 96: 320-327 https://doi.org/10.1046/j.1365-2672.2003.02153.x
  11. El-Helow, E. R., Y. R. Abdel-Fattah, K. M. Ghanem, and E. A. Mohamad. 2000. Application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl. Microbiol. Biotechnol. 54: 515- 520 https://doi.org/10.1007/s002530000411
  12. Falahatpishe, H., M. Jalali, N. Badami, N. Mardani, and K. Khosravi-Darani. 2007. Production and purification of a protease from an alkalophilic Bacillus sp. 2-5 strain isolated from soil. Iranian J. Biotechnol. 5: 110-113
  13. Francis, F., A. Sabu, K.-M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, and A. Pandey. 2003. Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115 https://doi.org/10.1016/S1369-703X(02)00192-4
  14. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395 https://doi.org/10.1007/s00253-002-1142-1
  15. Haaland, P. D. 1989. Statistical problem solving, pp. 1-18. In P. D. Haaland (ed.). Experimental Design in Biotechnology. Marcel Dekker, Inc., New York
  16. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
  17. Hameed, A., T. Keshavarz, and C. S. Evans. 1999. Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J. Chem. Technol. Biotechnol. 74: 5-8 https://doi.org/10.1002/(SICI)1097-4660(199901)74:1<5::AID-JCTB979>3.0.CO;2-T
  18. Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric. Biol. Chem. 35: 1783-1791 https://doi.org/10.1271/bbb1961.35.1783
  19. Horikoshi, K. 2006. Alkaliphiles, Genetic Properties and Applications of Enzymes, p. 4. Kodansha Ltd., Tokyo
  20. Johnvesly, B. and G. R. Naik. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in chemically defined medium. Proc. Biochem. 37: 139-144 https://doi.org/10.1016/S0032-9592(01)00191-1
  21. Joo, H.-S., C. G. Kumar, G.-C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some ome properties. J. Appl. Microbiol. 95: 267-272 https://doi.org/10.1046/j.1365-2672.2003.01982.x
  22. Kojima, M., M. Kanai, M. Tominaga, S. Kitazume, A. Inoue, and K. Horikoshi. 2006. Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10: 229-235 https://doi.org/10.1007/s00792-005-0491-y
  23. Kole, M. M., I. Draper, and D. F. Gerson. 1988. Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations. J. Chem. Technol. Biotechnol. 41: 197-206 https://doi.org/10.1002/jctb.280410305
  24. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline protease: From a bioindustrial view. Biotechnol. Adv. 17: 561-594 https://doi.org/10.1016/S0734-9750(99)00027-0
  25. Mehta, V. J., J. T. Thumar, and S. P. Singh. 2006. Production of alkaline protease from an alkaliphilic actinomycete. Biores. Technol. 97: 1650-1654 https://doi.org/10.1016/j.biortech.2005.07.023
  26. Nehete, P. N., V. D. Shah, and R. M. Kothari. 1985. Profiles of alkaline protease production as a function of composition of the slant, age, transfer and isolate number and physiological state of culture. Biotechnol. Lett. 7: 413-418 https://doi.org/10.1007/BF01166214
  27. Nobuaki, F. and Y. Kazuhiko. 1987. Decomposition of gelatin layers on x-ray films by the alkaline protease from Bacillus sp. Hakkokogaku Kaishi 65: 531-534
  28. Page, R. D. M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12: 357-358
  29. Patel, R., M. Dodia, and S.-P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Proc. Biochem. 40: 3569-3575 https://doi.org/10.1016/j.procbio.2005.03.049
  30. Patel, R., M. Dodia, and S. P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. 40: 3569-3575 https://doi.org/10.1016/j.procbio.2005.03.049
  31. Patel, R. K., M. S. Dodia, R. H. Joshi, and S. P. Singh. 2006. Production of extracellular halo-alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. isolated from seawater in Western India. World J. Microbiol. Biotechnol. 22: 375-382 https://doi.org/10.1007/s11274-005-9044-x
  32. Plackett, R. L. and J. P. Burman. 1946. The design of optimum multi-factorial experiments. Biometrika 33: 305-325 https://doi.org/10.1093/biomet/33.4.305
  33. Puri, S., Q.-K. Beg, and R. Gupta. 2002. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Microbiol. 44: 286-290 https://doi.org/10.1007/s00284-001-0006-8
  34. Rao, M. B., A. M. Tankasle, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbial Mol. Biol. Rev. 62: 597-635
  35. Reddy, L. V. A., Y.-J. Wee, J.-S. Yun, and H.-W. Ryu. 2008. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Biores. Technol. 99: 2242-2249 https://doi.org/10.1016/j.biortech.2007.05.006
  36. Shikha, S. A. and N.-S. Darmwal. 2007. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Biores. Technol. 98: 881-885 https://doi.org/10.1016/j.biortech.2006.03.023
  37. Sinha, N. and T. Satyanarayana. 1991. Alkaline protease production by thermophilic B. licheniformis. Indian J. Microbiol. 31: 425-430
  38. Stowe, R. A. and R. P. Mayer. 1966. Efficient screening of process variables. Ind. Eng. Chem. 58: 36-40
  39. Tari, C., H. Genckal, and F. Tokatli. 2006. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21. Proc. Biochem. 41: 659-665 https://doi.org/10.1016/j.procbio.2005.08.012
  40. Varela, H., M. D. Ferrari, L. Belobradjic, R. Weyrauch, and M. L. Loperena. 1996. Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity. World J. Microbiol. Biotechnol. 12: 643-645 https://doi.org/10.1007/BF00327730
  41. Vidyasagar, M., S.-B. Prakash, and K. Sreeramulu. 2006. Optimization of culture condition for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeomericum sp. TSS101. J. Lett. Appl. Microbiol. 43: 385-391 https://doi.org/10.1111/j.1472-765X.2006.01980.x

피인용 문헌

  1. Microbial proteases: Detection, production, and genetic improvement vol.37, pp.3, 2009, https://doi.org/10.3109/1040841x.2011.577029
  2. Optimization of 2,3-dihydroxybiphenyl 1,2-dioxygenase expression and its application for biosensor vol.102, pp.22, 2011, https://doi.org/10.1016/j.biortech.2011.08.071
  3. Enhanced production of α‐amylase from Bacillus subtilis subsp. spizizenii in solid state fermentation by response surface methodology and its evaluation in the hydrolysis of raw potato sta vol.64, pp.1, 2009, https://doi.org/10.1002/star.201100119
  4. 다양한 천일염으로 제조한 된장의 암세포 성장 억제 효과 vol.19, pp.2, 2009, https://doi.org/10.11002/kjfp.2012.19.2.278
  5. Automatic Flow-Batch System for Cold Vapor Atomic Absorption Spectroscopy Determination of Mercury in Honey from Argentina Using Online Sample Treatment vol.60, pp.19, 2009, https://doi.org/10.1021/jf300637b
  6. Estimating Crop Coefficient in Intermittent Irrigation Paddy Fields Using Excel Solver vol.19, pp.2, 2012, https://doi.org/10.1016/s1672-6308(12)60033-x
  7. Application of experimental designs to optimize medium composition for production of thermostable lipase/esterase by Geobacillus thermodenitrificans AZ1 vol.10, pp.2, 2012, https://doi.org/10.1016/j.jgeb.2012.08.001
  8. 재래식 된장에서 분리된 Bacillus licheniformis의 내열성 Protease 특성과 생산성 vol.48, pp.4, 2012, https://doi.org/10.7845/kjm.2012.048
  9. Production, Purification, and Characterization of Thermostableα-Amylase Produced byBacillus licheniformisIsolate AI20 vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/673173
  10. Shake-flask and bench-scale stirred tank bioreactor production optimization of a thermoalkaline protease from Bacillus cereus SIU1 using one-factor-at-a-time and response surface (statistical) methodo vol.32, pp.3, 2009, https://doi.org/10.3109/10242422.2014.913582
  11. Statistical optimization of alkaline protease production from Penicillium citrinum YL-1 under solid-state fermentation. vol.45, pp.5, 2009, https://doi.org/10.1080/10826068.2014.923450
  12. Enhanced production of protease by Pseudoalteromonas arctica PAMC 21717 via statistical optimization of mineral components and fed-batch fermentation vol.46, pp.4, 2009, https://doi.org/10.1080/10826068.2015.1031390
  13. Statistical Bioprocess Strategies for Bio-fabrication of Nano-Ag from Streptomyces rectiviolaceus Strain SMWN3.2 as a Novel Antimicrobial Agent against Hospital-Acquired Infectious Pathogens vol.12, pp.2, 2018, https://doi.org/10.22207/jpam.12.2.02
  14. Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system vol.18, pp.None, 2009, https://doi.org/10.1186/s12896-018-0481-7
  15. Effective multi-functional biotechnological applications of protease/keratinase enzyme produced by new Egyptian isolate ( Laceyella sacchari YNDH) vol.18, pp.1, 2009, https://doi.org/10.1186/s43141-020-00037-7
  16. Optimization, Purification, and Characterization of Haloalkaline Serine Protease from a Haloalkaliphilic Archaeon Natrialba hulunbeirensis Strain WNHS14 vol.49, pp.2, 2009, https://doi.org/10.48022/mbl.1904.04003