DOI QR코드

DOI QR Code

Formation of Flavone Di-O-Glucosides Using a Glycosyltransferase from Bacillus cereus

  • Ahn, Byoung-Chan (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeon, Young-Min (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Eun-Jeong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim, Yoong-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2009.04.30

Abstract

Microbial UDP-glycosyltransferases can convert many small lipophilic compounds into glycons using uridine-diphosphate-activated sugars. The glycosylation of flavonoids affects solubility, stability, and bioavailability. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-3, was cloned by PCR and sequenced. BcGT-3 was expressed in Escherichia coli BL21(DE3) with a glutathione S-transferase tag and purified using a glutathione S-transferase affinity column. BcGT-3 was tested for activity on several substrates including genistein, kaempferol, luteolin, naringenin, and quercetin. Flavonols were the best substrates for BcGT-3. The enzyme dominantly glycosylated the 3-hydroxyl group, but the 7-hydroxyl group was glycosylated when the 3-hydroxyl group was not available. The kaempferol reaction products were identified as kaempferol-3-O-glucoside and kaempferol-3,7-O-diglucoside. Kaempferol was the most effective substrate tested. Based on HPLC, LC/MS, and NMR analyses of the reaction products, we conclude that BcGT-3 can be used for the synthesis of kaempferol 3,7-O-diglucose.

Keywords

References

  1. Bowles, D., J. Isayenkova, E.-K. Lim, and B. Poppenberger. 2005. Glycosyltransferases: Managers of small molecules. Curr. Opin. Plant Biol. 8: 254-263 https://doi.org/10.1016/j.pbi.2005.03.007
  2. Harvsteen, B. H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96: 67-202 https://doi.org/10.1016/S0163-7258(02)00298-X
  3. Ibrahim, R. K., A. Bruneau, and B. Bantignies. 1998. Plant Omethyltransferase: Molecular analysis, common signature and classification. Plant Mol. Biol. 36: 1-10 https://doi.org/10.1023/A:1005939803300
  4. Jones, P. and T. Vogt. 2001. Glycosyltransferases in secondary plant metabolism; tranquilizers and stimulant controllers. Planta 213: 164-174 https://doi.org/10.1007/s004250000492
  5. Julsing, M. K., A. Koulman, W. J. Woerdenbag, W. J. Quax, and K. O. Oliver. 2006. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol. Eng. 23: 265-279 https://doi.org/10.1016/j.bioeng.2006.08.001
  6. Kim, J. H., B. G. Kim, J. A. Kim, Y. Park, Y. J. Lee, Y. Lim, and J.-H. Ahn. 2007. Glucosylation of flavonoids with E. coli expressing glycosyltransferase from Xanthomonas campestris. J. Microbiol. Biotechnol. 17: 539-542
  7. Kroon, P. A., M. N. Clifford, A. Crozier, A. J. Day, J. L. Donovan, C. Manach, and G. Williamson. 2004. How should we assess the effects of exposure to dietary polyphenol in vitro? Am. J. Clin. Nutr. 80: 15-21 https://doi.org/10.1093/ajcn/80.1.15
  8. Lee, Y. J., B. G. Kim, Y. Park, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096
  9. Masada, S., Y. Kawase, M. Nagatoshi, Y. Pguchi, K. Terasaka, and H. Mizukami. 2007. An efficient chemienzymatic production of small molecule glucosides with in situ UDP-glucose recycling. FEBS Lett. 581: 2562-2566 https://doi.org/10.1016/j.febslet.2007.04.074
  10. Méndez, C. and J. A. Salas. 2001. Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol. 19: 449-456 https://doi.org/10.1016/S0167-7799(01)01765-6
  11. Offen, W., C. Martinez-Fleites, M. Yang, E. Kiat-Lim, B. G. Davis, C. A. Tarling, C. M. Ford, D. J. Bowles, and G. J. Davies. 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25: 1396-1405 https://doi.org/10.1038/sj.emboj.7600970
  12. Shao, H. S., X. He, L. Achnine, J. W. Blount, R. A. Dixon, and X. Wang, 2005. Crystal structures of a multifunctional triterpene/ flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17: 3141-3154 https://doi.org/10.1105/tpc.105.035055
  13. Tahara, S. 2007. A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71: 1387-1404 https://doi.org/10.1271/bbb.70028
  14. Van Lanen, S. G. and B. Shen. 2006. Progress in combinatorial biosynthesis for drug discovery. Drug Discov. Today Technol. 3: 285-292 https://doi.org/10.1016/j.ddtec.2006.09.014
  15. Vogt, T., E. Zimmermann, R. Grimm, M. Meyer, and D. Strack. 1997. Are the characteristics of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases? Planta 203: 349-361 https://doi.org/10.1007/s004250050201
  16. Williams, C. 2006. Flavone and flavonol O-glycosides, pp. 749-856. In O. M. Anderson and K. R. Markham (eds.). Flavonoids; Chemisty, Biochemistry and Application. CRC Press, Boca Raton
  17. Yang, J., D. Hoffmeister, L. Liu, X. Fu, and J. S. Thorson. 2004. Natural product glycorandomization. Bioorg. Med. Chem. 12: 1577-1584 https://doi.org/10.1016/j.bmc.2003.12.046

Cited by

  1. 미생물 유래 특이당을 이용한 플라보노이드 당화반응 vol.26, pp.2, 2009, https://doi.org/10.7841/ksbbj.2011.26.2.093
  2. Enzymatic glycosylation of multivalent scaffolds vol.42, pp.11, 2009, https://doi.org/10.1039/c2cs35395d
  3. Construction of Artificial Biosynthetic Pathways for Resveratrol Glucoside Derivatives vol.24, pp.5, 2009, https://doi.org/10.4014/jmb.1401.01031
  4. Uncovering a Glycosyltransferase Provides Insights into the Glycosylation Step during Macrolactin and Bacillaene Biosynthesis vol.15, pp.18, 2014, https://doi.org/10.1002/cbic.201402384
  5. Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives vol.99, pp.7, 2009, https://doi.org/10.1007/s00253-015-6504-6
  6. Biochemical Characterization of Recombinant UDP-Glucose:Sterol 3-O-Glycosyltransferase from Micromonospora rhodorangea ATCC 31603 and Enzymatic Biosynthesis of Sterol-3-O-β-Glucosides vol.26, pp.3, 2009, https://doi.org/10.4014/jmb.1511.11003
  7. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology vol.34, pp.5, 2016, https://doi.org/10.1016/j.biotechadv.2016.02.012
  8. Genome‐wide identification and characterization of macrolide glycosyltransferases from a marine‐derived Bacillus strain and their phylogenetic distribution vol.18, pp.12, 2009, https://doi.org/10.1111/1462-2920.13367
  9. Improvement of the pharmacological activity of menthol via enzymatic β-anomer-selective glycosylation vol.7, pp.1, 2009, https://doi.org/10.1186/s13568-017-0468-0
  10. Enzymatic synthesis of avermectin B1a glycosides for the effective prevention of the pine wood nematode Bursaphelenchus xylophilus vol.102, pp.5, 2009, https://doi.org/10.1007/s00253-018-8764-4
  11. Production of New Isoflavone Glucosides from Glycosylation of 8-Hydroxydaidzein by Glycosyltransferase from Bacillus subtilis ATCC 6633 vol.8, pp.9, 2009, https://doi.org/10.3390/catal8090387
  12. Microbial Transformation of Flavonoids by Isaria fumosorosea ACCC 37814 vol.24, pp.6, 2009, https://doi.org/10.3390/molecules24061028
  13. Biochemical characterization of an organic solvent‐tolerant glycosyltransferase from Bacillus licheniformis PI15 with potential application for raspberry ketone glycoside production vol.67, pp.2, 2009, https://doi.org/10.1002/bab.1841
  14. OleD Loki as a Catalyst for Hydroxamate Glycosylation vol.21, pp.7, 2009, https://doi.org/10.1002/cbic.201900601
  15. Biological Synthesis of Genistein in Escherichia coli vol.30, pp.5, 2009, https://doi.org/10.4014/jmb.1911.11009
  16. Exploring the Nucleophilic N- and S-Glycosylation Capacity of Bacillus licheniformis YjiC Enzyme vol.30, pp.7, 2009, https://doi.org/10.4014/jmb.2001.01024