A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects

에폭시-산무수물 조성물의 경화거동 및 실리카 첨가에 따른 특성변화 연구

  • Lee, Chung Hee (Energy Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Kyoung-Mahn (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • 이충희 (한국화학연구원 에너지소재연구센터) ;
  • 김경만 (한국화학연구원 에너지소재연구센터)
  • Received : 2009.09.04
  • Accepted : 2009.09.23
  • Published : 2009.09.30

Abstract

Epoxy/anhydride systems with silica filler were studied to improve the cure behavior and characteristics. To study the curing process of epoxy/anhydride using DSC and a stress rheometer, it was observed that gelation temperature increased by increasing the thermal rate or in high isothermal conditions, while it was observed that the degree of cure at gelation decreased. Thermal stability of the epoxy/anhydride system showed any increment by increasing silica contents, except slight decrease of weight by containing humidity. The epoxy resin cured with 30% of silica filler decreased coefficient thermal expansion (CTE) about 33% to show $40ppm/^{\circ}C$. Specimens filled with 30 wt% of silica showed 60% increase in storage modulus at $30^{\circ}C$ to show 3909 MPa compared with neat resin to 2,377 MPa. Epoxy/anhydride systems with surface treated silica by silane coupling agent decreased storage modulus.

에폭시/산무수물 경화제계에 실리카를 필러로 사용하여 에폭시 접착제의 경화거동과 특성을 알아보았다. DSC와 stress rheometer를 이용하여 측정한 에폭시 수지의 경화거동에서는 승온 속도를 증가시키거나 등온에서 경화 온도가 높을수록 gelation 온도는 높아졌으나 경화도는 감소함을 확인하였다. 열 안정성은 실리카 간의 응집 및 수분으로 인해 미세한 질량 감소 차이 외에 실리카 함량에 따른 변화는 없는 것으로 나타났다. 실리카가 첨가된 경화물의 열팽창계수는 실리카를 30 wt% 첨가하였을 때 약 33%의 감소하여 $40ppm/^{\circ}C$ 임을 확인하였다. 동역학적인 물성은 필러를 첨가하지 않은 시편의 저장탄성률(2,377 MPa)에 비해 30 wt%의 실리카 함량이 첨가된 시편의 저장탄성률(3,909 MPa)은 약 60% 증가하였다. 실리카의 표면을 실란 커플링제로 처리한 시편의 경우 저장탄성률이 감소하였다.

Keywords

References

  1. H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw-Hill, 1957.
  2. C. A. MAy, Epoxy resins, 2nd edition, Marcel Dekker, Inc. New York, 1988.
  3. N. Bouillon, J. P. Pascault, and L. Tighzert, J. Appl. Polym. Sci., 38, 2103 (1989). https://doi.org/10.1002/app.1989.070381112
  4. S. Montserrat, C. Flaqute, M. Calafell, G. Andreu, and J. Malek, Thermochimica Acta, 269/270, 213 (1995). https://doi.org/10.1016/0040-6031(95)02362-3
  5. Z. Zhang, E. Beatty, and C. P. Wong, Macromol. Mater. Eng., 288, 365 (2003). https://doi.org/10.1002/mame.200390029
  6. Z. Zhang, T. Yamashita, and C. P. Wong, Macromol. Chem. Phys., 206, 869 (2005). https://doi.org/10.1002/macp.200400466
  7. W. H. Park and J. K. Lee, J. Appl. Polym. Sci., 67, 1101 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1101::AID-APP18>3.0.CO;2-2
  8. D. Harran and A. Laudouard, J. Appl. Polym. Sci., 32, 6043 (1986). https://doi.org/10.1002/app.1986.070320732
  9. J. B. Enns and J. K. Gillham, J. Appl. Polym. Sci., 28, 2567 (1983). https://doi.org/10.1002/app.1983.070280810
  10. C. Y.-C. Lee and I. J. Goldfarb, Polym. Eng. Sci., 21, 390 (1981). https://doi.org/10.1002/pen.760210705
  11. M. J. Doyle, A. F. Lewis, and H. Li, Polym. Eng., 19, 687 (1979). https://doi.org/10.1002/pen.760191007
  12. C. M. Tung and P. J. Dynes, J. Appl. Polym. Sci., 27, 569 (1982). https://doi.org/10.1002/app.1982.070270220
  13. J. K. Lee and K. D. Pae, J. Polym. Sci., Polym., 28, 323 (1990). https://doi.org/10.1002/pola.1990.080280208
  14. J. K. Lee and K. D. Pae, J. Macromol. Sci., Phys., B32(1), 79 (1993).
  15. L. Matejka, J. Lovy, S. Pokorny, K. Bouchal, and K. Dusek, J. Polym. Sci. Polym. Chem. Ed., 21, 2873 (1983). https://doi.org/10.1002/pol.1983.170211003
  16. Y. Tanaka and H. Kakiuchi, J. Polym. Sci., A-2, 3405 (1964).
  17. P. L. Teh, M. Jaafar, H. M. Akil, K. N. Seethaamu, A. N. R. Wagiman and K. S. Beh, Polym. adv. Technol., 19, 308 (2008). https://doi.org/10.1002/pat.1014
  18. J. H. Lau, Flip Chip Technologies, McGraw-Hill, 123-153 (1996).
  19. J. F. J. M. Caers, X. J. Zhao, H. G. Sy, E. H. Wong, and S. G. Mhaisalkar, "Towards a predictive behavior of non-conductive adhesive interconnects in moisture environment," in Proc. Electron. Compon. Technol. Conf., Jun. vol. 1, pp. 106-112 (2004).