Perception of Science High School Students on Modeling Activity

모델링 활동에 대한 과학고등학교 학생들의 인식

  • Published : 2009.04.30

Abstract

The purpose of this study was to investigate the perception of science high school students for modeling module that contain scientists' thinking process. Modeling modules about 'gas diffusion', 'ion conductivity' and 'ion mobility' were applied to science high school students. Interview, lab report, and dialogue were analyzed to comprehend features of modeling module. Students who performed modeling modules perceived that modeling modules were appropriate to experience scientists' research process. Modeling modules were kind of activity to raise 'muscle of thinking', to be needed 'new views' and 'various representations', and to contain 'designing laboratory process'. Therefore, the development of various modeling modules is needed in the near future.

이 연구의 목적은 과학자의 사고과정을 반영한 모델링 탐구를 적용한 후 모델링에 대한 학생들의 인식을 알아보는 것이다. 기체의 확산, 이온의 전도도, 이온의 이동에 대한 모델링 모듈을 과학고등학교 1학년 학생들을 대상으로 적용하였다. 모델링 모듈에 대한 학생들의 인식을 알아보기 위하여 인터뷰, 실험보고서, 대화 내용을 분석하였다. 학생들은 모델링 탐구가 과학자의 연구과정을 경험할 수 있는 활동이며, 모델링 탐구는 '생각의 근육'을 키우는 활동, '새로운 시각'과 '다양한 표현'이 필요한 활동, '실험 디자인' 과정이 포함된 활동으로 인식하고 있었다. 그러므로 앞으로 다양한 모델링 모듈의 개발이 필요하다.

Keywords

References

  1. 박호철 (2004). 유아과학교육에 적 합한 MBTL (Model Based Teaching & Leaming) 수업절차 모형 개발 연구. 미래유아교육학회지, 11(4), 201-227
  2. 박호철 (2007). MARS 프로그램의 모텔링 분석을 통한 유아과학수업에서의 효율적인 모텔링 방안 연구. 미래유아교육학회지, 14(2), 1-20
  3. 조흥식, 정선욱, 김진숙, 권지성 공역 (2005). 질적 연구 방법론: 다섯 가지 전통. 도서 출판 학지사, pp. 80-83
  4. Booth, S. (1997). On phenomenography: Learning and teaching. Higher Education Research and Development, 16. 135-158 https://doi.org/10.1080/0729436970160203
  5. Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053 https://doi.org/10.1080/095006900416901
  6. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horse for courses? International Journal of Science Education, 20(1), 83-97 https://doi.org/10.1080/0950069980200106
  7. Gilbert, J. K. (2004). Models and modeling: Routes to more authentic science education. International Journal of Science Education, 26(2), 115-130
  8. Booth, S. (1997). On phenomenography: Learning and teaching. Higher Education Research and Development, 16. 135-158 https://doi.org/10.1080/0729436970160203
  9. Gobert, J. D., & Buckley, B. C. (2000). lntroduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9),891-894 https://doi.org/10.1080/095006900416839
  10. Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. Journal of Research in Science Teaching, 33(9), 1-26
  11. Halloun, I. (2006). Modeling Theory in Science Education. New York: Springer
  12. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026 https://doi.org/10.1080/095006900416884
  13. Justi, R., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387 https://doi.org/10.1080/09500690110110142
  14. Khan, S. (2007). Model-Based Inquiries in Chemistry. Science Education, 91(6), 877-905 https://doi.org/10.1002/sce.20226
  15. Ogan-Bakiroglu, F. (2007). Effects of Model-based Teaching on Pre-service Physics Teachers' Conceptions of the Moon, Moon Phrases, and Other Lunar Phenomena. International Journal of Science Education, 29(5), 555-593 https://doi.org/10.1080/09500690600718104
  16. National Research Council (1996). National Science Education Standards. Washington, DC: National Academy Press
  17. Rotbain, Y., Marbach-Ad, G., & Stavy, R. (2006). Effect of Bead and Illustrations Models on High School Students' Achievement in Molecular Genetics. Journal of Research in Science Teaching, 43(5), 500-529 https://doi.org/10.1002/tea.20144
  18. Schwarz, C., & Gwekwerere, T. (2007). Using a Guided Inquiry and Modeling Instructional Framework (EIMA) to Support Preservice K-8 Science Teaching. Science Education, 91 (1), 158-186 https://doi.org/10.1002/sce.20177
  19. Sternberg, R. J. (1998). A three-facet model of creativity. In Sternberg, R. J. (Ed.), The nature of creativity: Contemporary psychological perspεctives , MA: Cambridge University Press, pp. 125-141
  20. Treagust, D. F., Chittleborough, G., & Thapelo, L. (2002). Students' Understanding of the Role of Scientific Models in Leaming Science. International Journal of Science Education, 24(4), 351-368