Atlantoaxial Rotatory Fixation in Adults Patient

Sei Woong Jeon, M.D., Je Hoon Jeong, M.D., Ph.D., Seung Myung Moon, M.D., Sun Ki Choi, M.D.
Department of Neurological Surgery, Hansung Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea

Atlantoaxial rotatory fixation (AARF) in adult is a rare disorder that occurs followed by a trauma. The patients were presented with painful torticollis and a typical 'cock robin' position of the head. The clinical diagnosis is generally difficult and often made in the late stage. In some cases, an irreducible or chronic fixation develops. We reported a case of AARF in adult patient which was treated by immobilization with conservative treatment. A 25-year-old female was presented with a posterior neck pain and limitation of motion of cervical spine after a traffic accident. She had no neurological deficit but suffered from severe defect on the scalp and multiple thoracic compression fractures. Plain radiographs demonstrated torticollis, lateral shift of odontoid process to one side and widening of one side of C1-C2 joint space. Immobilization with a Halter traction were performed and analgesics and muscle relaxants were given. Posterior neck pain and limitation of the cervical spine's motion were resolved. Plain cervical radiographs taken at one month after the injury showed that torticollis disappeared and the dens were in the midline position. The authors reported a case of type I post-traumatic AARF that was successfully treated by immobilization alone.

KEY WORDS: Atlantoaxial subluxation · Adult patient · Radiography · Rotatory fixation · Conservative management · Torticollis.

INTRODUCTION

Atlantoaxial rotatory fixation (AARF) is a rare condition and often under recognized, resulting in an incorrect or delayed diagnosis[1]. There is usually a higher incidence in children. The common clinical characteristics are painful torticollis and cock robin position presented with the head tilted to one side and rotated to the other side. Because a clinical diagnosis of AARF is generally difficult, it is often made in the late stage. In some cases, an irreducible or chronic fixation develops[12]. We report a case of acute post-traumatic AARF in adults that was treated by traction and immobilization.

CASE REPORT

A 25-year-old female was taken to our emergency room after a traffic accident. She complained of severe headache, neck and upper thoracic pain. She suffered from a severe defect on the scalp with underlying skull exposure and multiple thoracic spine compression fractures, but had no neurological deficit. The patient was admitted to our intensive care unit. After 5 days of conservative management, initial symptoms were improved. However, she complained the neck pain with limitation in range of motion. We decided to review and further skeletal evaluation of the skull base and neck. Cervical spine radiography demonstrated straightening and mild scoliotic change of the cervical spine. An open mouth radiography showed widening of the right C1-C2 joint space with the left C1 lateral mass which is closer to the odontoid process than right one (Fig. 1A). Three-dimensional surface reconstructions of CT (General Electric Light Speed Scanner, Munich, Germany) images revealed the laterally displaced odontoid process to the left C1 lateral mass and a normal atlantoaxial interval and C1 malrotation to the right, that was defined as AARF (Fig. 1C). However, MRI showed no transverse and alar ligament injury (Fig. 1B). Immobilization with a Philadelphia brace and bed rest were followed. After a few hours, the patient was able to turn normally and rotate her neck again. Thereafter, neck pain was resolved with a rapid improvement in the motion of the cervical spine. The open mouth radiography revealed that the dens were in the midline position (Fig. 1D). She was...
DISCUSSION

Rotatory deformity of the atlanto-axial joint was termed by Wortzman and Dewar in 1968. However, Fielding and Hawkins preferred the term atlanto-axial rotatory fixation (AARF), because the fixation of the atlas on the axis may occur still within the normal range of rotation. The common cause of AARF is generally an infection or a trauma, but other conditions such as ankylosing spondylitis, metastatic tumor, generalized ligamentous laxity, and eosinophilic granuloma have also been reported. The phenomenon of AARF with or without subluxation predominates in children and female regardless of cause.

Although the pathophysiology of AARF is not well defined, they noticed that the lateral joint capsule was very wide and the transverse and alar ligaments had increased laxity. However, the fixation phenomenon could not be reproduced experimentally. The higher incidence of AARF in children is probably attributable to a combination of factors: a large head and underdeveloped neck musculature, a rotational angle greater than 45°, the horizontal configuration of the C1-C2 articular facets, and an increased elasticity of the joint capsules. Therefore, the pediatric population is predisposed to AARF and a differential diagnosis should be made when dealing with acute torticollis in children.

On open mouth radiography, anteriorly rotated C1 lateral mass appears wider and closer to the midline than the lateral mass on the opposite side, and the C1-C2 joint spaces appear asymmetrically. Cervical radiography followed by CT scanning is considered the best method to detect this abnormality, and three dimensional CT reconstruction is an additional aid in demonstrating subluxation. CT scan also allows an excellent demonstration of abnormal C1-C2 relationships, visualizing the dislocation, determining whether it is unilat-
ral or bilateral, and looking for fractures1,2,4,13. Three-dimen-
sional reconstruction images give a global view of the
cervical deformity5. Magnetic resonance imaging (MRI)
can offer direct visualization of tear or avulsion of the
transverse ligament6. Incidence of AARF in adults patients
is lower than that of children12, and because of skull super-
rimposition on the upper cervical spine, plain radiographs
are sometimes difficult to diagnose AARF, especially in
emergency state. Even in adult patients, physician needs to
be extremely careful about management of patients with
limitation of neck motion (LOM) and multiple trauma,
especially the head trauma.

The treatment options include immobilization with
conservative care, traction, manual reduction, and surgery.
Acute traumatic AARF is often reduced easily. Treatments
advocated in many cases of less than a 1-month history and
minor trauma2 are immobilization with or without traction
and the patients achieve good long term stability. However,
the time interval between injury and reduction appears to
correlate with rates of recurrence and failure of reduction by
non-surgical techniques. Chronic AARF over three months
may become irreducible8,15. In 1977, delay in diagnosis
averaged 1 year12; almost every patient was treated by
arthrodesis after several days or weeks of skull traction.
Therefore, treatment by cervical traction started as early as
possible may cure the patient and can be reduced to a
minimum of 24 hr and operative C1-C2 fixaton can be
prevented. A surgical approach is needed for cases of AARF
with spinal instability, neurological involvement, or failure
to maintain reduction by conservative measures5,10,14. In
our case, posterior neck pain and limitation of motion of
neck were resolved spontaneously during traction and bed
rest with the neck immobilization by Philadelphia collar
allowed full recovery. At 6 months follow-up, she had no
posterior neck pain and LOM of neck. Furthermore, she
had no neurological deficit with normal atlantoaxial
articulation on open-mouth radiograph.

CONCLUSION

The diagnosis of AARF, especially in adult patient with
multiple traumas, is easily missed out because the incidence
is low and a neurological function is normal. Even in adult
patients, AARF should be kept in mind in patient who
present with the neck pain and the limitation of neck
motion combined with a head trauma. A precise diagnosis
and an early treatment are the keys to prevent the operative
treatment.

Acknowledgements
This paper has not been funded received from any of the following
organizations: National Institutes of Health (NIH); Wellcome
Trust; Howard Hughes Medical Institute (HHMI); and other(s).

References
1. Bort CT, Mure AJ, Iannaccone WM, DeLong WG Jr.: Three-
dimensional computerized tomographic demonstration of bilateral
atlantoaxial rotatory dislocation in an adult: report of a case and
review of the literature. J Orthop Trauma 8: 67-72, 1994
2. Castel E, Benazet JP, Samaha C, Charlot N, Morin O, Sauvant G:
Delayed closed reduction of rotary atlantoaxial dislocation in an
4. Dickman CA, Mannourian A, Sonntag VK, Drayer BP: Magnetic
resonance imaging of the transverse atlantal ligament for the evaluation
5. Fielding JW, Hawkins RJ: Atlantoaxial rotational fixation (Fixed
rotatory subluxation of the atlanto-axial joint). J Bone Joint Surg Am
59: 37-44, 1977
[Torticollis and C1-C2 rotation subluxation. Apropos of a case. The
value of a dynamic scanner and of a 3-dimensional scanner.] J Neu-
roradiol 21: 223-227, 1994
7. Goddard NJ, Stabler, J, Albert JS: Atlanto-axial rotational fixation and
fracture of the clavicle. An association and a classification. J Bone
8. Govender S, Kumar KP: Staged reduction and stabilisation in chronic
subluxation in ankylosing spondylitis. A case report. Spine 15: 1374-
1376, 1990
10. Levine AM, Edwards CC: Treatment of injuries in the C1-C2
11. Marar BC, Balachandran N: Non-traumatic atlantoaxial dislocation
et al.: A C1-2 locked facet in a child with atlantoaxial rotatory fixation.
Case report. J Neurosurg 103: 565-566, 2005
and dislocation, Spine 20: 1928-1930, 1995
14. Phillips WA, Henninger RN: The management of rotatory atlanto-
1989
15. Schwarz N, Lenz M, Berzlanovich A, Smetka W: [Atlantoaxial
rotation and distance in small children. A postmortem study.] Unfall-
chirurg 103: 656-661, 2000
16. Sehn MJ, Rhim SC, Rohl RW, Park HC: Atlantoaxial rotatory fixation -
17. Wenzelkopf M, Naeve D, Rufl M, Harms J, Jeskevsky D: Therapeutic
options and results following fixed atlantoaxial rotatory dislocations.
Eur Spine J 14: 61-68, 2005
295-297, 1980
20. Woodruff JH, Lee C: The role and limitations of computed tomo-
graphic scanning in the evaluation of cervical trauma. J Trauma 33:
698-708, 1992