DOI QR코드

DOI QR Code

TIR Holographic lithography using Surface Relief Hologram Mask

표면 부조 홀로그램 마스크를 이용한 내부전반사 홀로그래픽 노광기술

  • Park, Woo-Jae (Department of Physics in Hanyang University) ;
  • Lee, Joon-Sub (Department of Physics in Hanyang University) ;
  • Song, Seok-Ho (Department of Physics in Hanyang University) ;
  • Lee, Sung-Jin (Mechatronics and Manufacturing Technology Center, Samsung Electronics CO.) ;
  • Kim, Tae-Hyun (Mechatronics and Manufacturing Technology Center, Samsung Electronics CO.)
  • Published : 2009.06.25

Abstract

Holographic lithography is one of the potential technologies for next generation lithography which can print large areas (6") as well as very fine patterns ($0.35{\mu}m$). Usually, photolithography has been developed with two target purposes. One was for LCD applications which require large areas (over 6") and micro pattern (over $1.5{\mu}m$) exposure. The other was for semiconductor applications which require small areas (1.5") and nano pattern (under $0.2{\mu}m$) exposure. However, holographic lithography can print fine patterns from $0.35{\mu}m$ to $1.5{\mu}m$ keeping the exposure area inside 6". This is one of the great advantages in order to realize high speed fine pattern photolithography. How? It is because holographic lithography is taking holographic optics instead of projection optics. A hologram mask is the key component of holographic optics, which can perform the same function as projection optics. In this paper, Surface-Relief TIR Hologram Mask technology is introduced, and enables more robust hologram masks than those previously reported that were formed in photopolymer recording materials. We describe the important parameters in the fabrication process and their optimization, and we evaluate the patterns printed from the surface-relief TIR hologram masks.

내부전반사 홀로그래픽 노광 기술은 넓은 면적(6")을 아주 미세하게($0.35{\mu}m$) 노광할 수 있는 차세대 광 노광 기술로서 평가받고 있다. 기존의 광 노광 기술은 $1.5{\mu}m/6}$ 이상이 가능한 (LCD용 노광기)과 $0.2{\mu}m/1.5"$ 이하(반도체용 노광기)의 패턴을 노광할 수 있도록 양분되어 발전하여 왔다. 이에 반하여 내부전반사 홀로그래픽 노광 기술은 일괄 노광 면적은 6"로 유지하면서 $0.35{\mu}m$에서 $1.5{\mu}m$의 사이의 패턴을 구현할 수 있는 특별한 능력을 갖고 있다. 이는 기존 광 노광 방식에서 반드시 필요로 하는 결상 광학계를 사용하지 않고 홀로그램 마스크를 사용하기 때문이다. 본 논문에서는 내부전반사 홀로그래픽 노광 기술의 핵심기술인 홀로그램 마스크를 표면 부조 홀로그램 형태로 구현할 수 있는 핵심 인자가 무엇인지를 분석하여 최적화 하는 방법에 대해 논하고, 이를 이용하여 노광한 미세패턴에 대한 결과를 실험적으로 평가하였다.

Keywords

References

  1. P. Burggraaf, 'FPD lithography; system technology pushed to the limit,' Semiconductor International, vol. 12, pp. 42-44, 1992
  2. 강태원, '반도체 소자 기술의 한계는 어디인가?', 물리학과 첨단기술, 제9권, 7-8호, 7월, 2000
  3. M. Levenson, K. Johnson, V. Hanchett, and K. Chiang, 'Projection photolithography by wave-front conjugation,' J. Opt. Soc. Am., vol. 71, no. 6, pp. 737-743, 1981 https://doi.org/10.1364/JOSA.71.000737
  4. E. Champagne and N. E. Massey, 'Resolution in Holography,' Appl. Opt., vol. 8, no. 9, pp. 1879-1885, 1969 https://doi.org/10.1364/AO.8.001879
  5. I. Ross, G. Davis, and D. Klemitz, 'High resolution holographic image projection at visible and ultraviolet wavelengths,' Appl. Opt., vol. 27, no.5, pp. 967-972, 1988 https://doi.org/10.1364/AO.27.000967
  6. 김대준, 박기수, 권진혁, '내부 전반사 홀로그램을 이용한 미세 패턴의 결상,' 한국광학회지, 제 6권, 3호, pp. 239-244, 1995
  7. K. Stetson, 'Holography with total internally reflected light,' Appl. Phys. Lett., vol. 11, no. 7, pp. 225-226, 1967 https://doi.org/10.1063/1.1755109
  8. F. Clube, S. Gray, D. Struchen, J. Tisserand, S. Malfoy, and Y. Darbellay, 'Holographic microlithography,' Opt. Eng., vol. 34, no. 9, pp. 2723-2730, 1995 https://doi.org/10.1117/12.205673
  9. F. Clube, S. Gray, D. Struchen, S. Malfoy, Y. Darbellay, N. Magnon, B. Gratiet, and J. Tisserand, 'Large-field, high-resolution photolithography,' Proc. SPIE, vol. 3099, pp. 36-45, 1997 https://doi.org/10.1117/12.281232
  10. A. Nobari, S. Mourgue, F. Clube, M. Jorda, C. Iriguchi, S. Inoue, E. Grass, and H. Mayer, 'From c-Si TFTs onto Systems on Glass,' Digest of Technical Papers, 2005 International Workshop on Active-Matrix Liquid-Crystal Displays, Kanazawa, Japan, 2005, pp. 207-210
  11. F. Clube, 'Method and apparatus for forming a surfacerelief hologram mask,' U.S. Patent 0232838, 2006
  12. W. Han, 'High resolution lithography based on deep ultraviolet total-internal-reflection holography using surfacerelief techniques,' Ph.D. Thesis, EPFL, 1999
  13. B. Saleh and M. Teich, Fundamentals of Photonics second edition (Wiley, New York, USA, 1991), pp.43-47
  14. 정현섭, 김 남, 윤진선, 박태형, 신창원, '투과형 기록구조에서 반사형 포토폴리머의 광학 특성 및 미세패턴기록', 한국광학회지, 제 18권, 1호, pp. 8-13, 2007 https://doi.org/10.3807/HKH.2007.18.1.008
  15. S. Sainov and R. Stoycheva-Topalova, 'Total internal reflection holographic recording in very thin films,' Journal of Optics A: Pure and Applied Optics, vol. 2, pp.117-120, 2000 https://doi.org/10.1088/1464-4258/2/2/308

Cited by

  1. Total-internal-reflection Holographic Photo-lithography by Using Incoherent Light vol.20, pp.6, 2009, https://doi.org/10.3807/KJOP.2009.20.6.334