DOI QR코드

DOI QR Code

Investigation of Domain Structure in (001) PMN-x%PT Crystals by Scanning Force Microscope

Scanning Force Microscope에 의한 (001) PMN-x%PT 단결정의 도메인 구조에 대한 연구

  • Lee, Eun-Gu (Department of Advanced Materials Engineering, Chosun University) ;
  • Lee, Jae-Gab (School of Advanced Materials Engineering, Kookmin University)
  • Published : 2009.06.27

Abstract

The domain structures of annealed (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x = 10, 20, 30, 35, and 40 at% were investigated by Polarized Optical Microscopy (POM) and Scanning Force Microscopy (SFM) in the piezoresponse mode. Both Polar Nano-Domains (PND) and long strip-like domains were clearly observed. The results also showed how the domain structure changed between phases with an increasing x in the PMN-x%PT crystals and the domain hierarchy on various length scales ranging from 40 nm to 0.1 mm. Distorted pseudo-cubic phase (x < 20%) consisted of PNDs that did not self-assemble into macro-domain plates. The rhombohedral phase (x = 30%) consisted of PNDs that began to self-assemble into colonies along preferred {110} planes. The monoclinic phase (x = 35%) consisted of miniature polar domains on the nm scale, whereas, the tetragonal phase (x = 40%) consisted of {001} oriented lamella domains on the mm scale that had internal nano-scale heterogeneities, which self-assembled into macro-domain plates oriented along {001} the mm scale.

Keywords

References

  1. G.A. Smolenskii and A. Agranovskaya, Sov. Phys. Sol. State, 1, 1429-1441 (1960)
  2. L. E. Cross, Ferroelectrics, 151, 305-315 (1994) https://doi.org/10.1080/00150199408244755
  3. B. Noheda, D. E. Cox, Shirane, J. Gao and Z. Ye, Phys. Rev. B, 66, 054104 (2002) https://doi.org/10.1103/PhysRevB.66.054104
  4. J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert and G. Calvarin, Phys. Rev. B, 65, 064106 (2002) https://doi.org/10.1103/PhysRevB.65.064106
  5. C. -S. Tu, C. -L. Tsai, V. H. Schimidt, H. Luo and Z. Yin, J. Appl. Phys., 89, 7908 (2001) https://doi.org/10.1063/1.1370998
  6. G. Xu, H. Luo, H. Xu and Z. Yin, Phys. Rev. B, 64, 020102 (2001) https://doi.org/10.1103/PhysRevB.64.020102
  7. C. Tu, I. Shih, V. Schmidt, and R. Chien, Appl. Phys. Let., 83, 1833 (2003) https://doi.org/10.1063/1.1602558
  8. C. Randall, D. Barber, and R. Whatmore, J. Microsc., 45, 275 (1987)
  9. D. Viehland, M. -C. Kim, Z. Xu and J. -F. Li, Appl. Phys. Let., 67, 2471 (1995) https://doi.org/10.1063/1.114611
  10. Z. Xu, M. C. Kim, J. -F. Li and D. Viehland, Phil. Mag. A, 74, 395 (1996) https://doi.org/10.1080/01418619608242150
  11. M. Abplanalp, L.M. Eng, and P. Gunter, App. Phys. A, 66, S231 (1998) https://doi.org/10.1007/s003390051136
  12. M. Abplanalp, D. Barosova, J. Erhart, J. Fousek, P. Gunter, J. Nosek and M. Sulc, J. Appl. Phys., 91, 3797 (2002) https://doi.org/10.1063/1.1446655
  13. I. K. Bdikin, V. V. Shvartsman and A. L. Kholkin, Appl. Phys. Letts., 83, 4232 (2003) https://doi.org/10.1063/1.1627476
  14. W. Tan, Z. Xu, J. Shang and P. Han, Appl. Phys. Lett., 76, 3732 (2000) https://doi.org/10.1063/1.126765
  15. W. Zhu and P. Han, Appl. Phys. Lett., 75, 3868 (1999) https://doi.org/10.1063/1.125483
  16. H. F. Yu, H. R. Zeng, H. X. Wang, G. R. Li, H. S. Luo and Q. R. Yin, Solid State Commun., 133, 311 (2005) https://doi.org/10.1016/j.ssc.2004.11.012
  17. H. R. Zeng, H. F. Yu, R. Q. Chu, G. R. Li, H. S. Luo and Q. R. Yin, Mater. Lett., 59, 238 (2005) https://doi.org/10.1016/j.matlet.2004.07.056