DOI QR코드

DOI QR Code

Room Temperature Strength and Crack Healing Morphology of Si3N4 Composite Ceramics with SiO2 Colloidal

SiO2 콜로이달에 의한 Si3N4 복합 세라믹스의 상온굽힘강도 및 균열치유 현상

  • Published : 2009.07.01

Abstract

Strength characteristics of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and additive $SiO_2$. $SiO_2$ colloidal could significantly increase the bending strength. Crack healing temperature decreased 300 K by additive $TiO_2$. Bending strength of specimen added $SiO_2$ is higher than that of non-added $SiO_2$. Moreover, bending strength of specimen with $SiO_2$ colloidal coating is much higher that of non-coated specimen. In in-situ observation, crack-healed specimen at 1,573 K shows phenomenon like a fog on the surface. By SPM, both crack-healed specimen, non-coating and coating of $SiO_2$ colloidal, at 1,273 K were healed completely but both of 1,573 K exist crack. This was made by evaporation of $SiO_2$ at high temperature. Crack-healing materials of $Si_3N_4$ composite ceramics is crystallized $Y_2Si_2O_7$, $Y_2Ti_2O_7$ and $SiO_2$. A large amount of Si and O, and little C were detected by EPMA. Si and O increase but C decreases according to heat treatment temperature. Specimens with additive $SiO_2$ were more detected Si and O than that of non-additive $SiO_2$. Specimen with $SiO_2$ colloidal coatings were much more detected O.

Keywords

References

  1. Petrovic, J. J. and Jacobson, L. A., 1976, 'Controlled Surface Flaws in Hot-Pressed SiC,' J. Am. Ceram. Soc., Vol. 59, pp. 34-37 https://doi.org/10.1111/j.1151-2916.1976.tb09381.x
  2. Gupta, T. K., 1976, 'Crack Healing and Strengthening of Thermally Shocked Alumina,' J. Am. Ceram. Soc., Vol.59, pp. 259-62 https://doi.org/10.1111/j.1151-2916.1976.tb10949.x
  3. Choi, S. R. and Tikare, V., 1992, 'Crack Healing Behaviour of Hot Pressed Silicon Nitride Due to Oxidation,' Scr. Metall. Mater., Vol. 26, pp. 1263-68 https://doi.org/10.1016/0956-716X(92)90574-X
  4. Moffatt, J. E.. Plumbridge, W. J. and Hermann, R., 1996, 'High Temperature Crack Annealing Effect on Fracture Toughness of Alumina and Alumina.SiC Composite,' Br. Ceram. Trans., Vol. 95, pp. 23-29
  5. Chu, M. C., Sato, S., Kobayashi, Y. and Ando, K., 1995, 'Damage Healing and Strengthening Behaviour in Intelligent Mullite/SiC Ceramics,' Fatigue Fract. Eng. Mater. Struct., Vol. 18, pp. 1019-29 https://doi.org/10.1111/j.1460-2695.1995.tb00924.x
  6. Chu, M. C., Sato, S., Kobayashi, Y. and Ando, K., 1994, 'Study on Strengthening of Mullite by Dispersion of Carbide Ceramics Particles,' (in Jpn.), Jpn. Soc. Mech. Eng., Vol. 60, pp. 2829-34 https://doi.org/10.1299/kikaia.60.2829
  7. Zhang, Y. Z., Edwards, L. and Plumbridge, W. J., 1998, 'Crack Healing in a Silicon Nitride Ceramics,' J. Am. Ceram. Soc., Vol. 81, pp. 34-37 https://doi.org/10.1111/j.1151-2916.1998.tb02558.x
  8. Ando, K., Ikeda, T., Sato, S., Yao, F. and Kobayashi, Y., 1998, 'A Preliminary Study on Crack Healing Behaviour of $Si_3N_4$/SiC Composite Ceramics,' Fatigue Fract. Eng. Mater. Struct., Vol. 21, pp. 119-22
  9. Ando, K., Shirai, Y., Nakatani, M., Kobayashi, Y. and Sato, S., 2002, '(Crack-Healing Proof Test): A New Methodology to Guarantee the Structural Integrity of a Ceramics Component,' J. Eur. Ceram. Soc., Vol. 22, pp. 121-28 https://doi.org/10.1016/S0955-2219(01)00236-9
  10. Ando, K., Houjyou, K., Chu, M. C., Takeshita, S., Takahashi, K., Sakamoto, S. and Sato, S., 2002, 'Crack-Healing Behavior of $Si_3N_4$/SiC Ceramics under Stress and Fatigue Strength at the Healed Temperature,' J. Eur. Ceram. Soc., Vol. 22, pp. 1339-46 https://doi.org/10.1016/S0955-2219(01)00435-6
  11. Lee, S. K., Ishida, W., Lee, S. Y., Nam, K. W. and Ando, K.. 2005, 'Crack-Healing Behavior and Resultant Strength Properties of Silicon Carbide Ceramic,' J. Eur. Ceram. Soc., Vol. 25, pp. 569-576 https://doi.org/10.1016/j.jeurceramsoc.2004.01.021
  12. Nam, K. W., Kim, H. S., Son, C. S., Kim, S. K. and Ahn S. H., 2007, 'Cracked-Healing and Elevated Temperature Bending Strength of $Al_2O_3$ Composite Ceramics by an amount of $Y_2O_3$/TEX>,' Transactions of the KSME(A), Vol. 31, No. 11, pp. 1108-1114 https://doi.org/10.3795/KSME-A.2007.31.11.1108
  13. Kim, H. S., Kim, M. K., Kim, J. W., Ahn, S. H. and Nam, K. W., 2007, 'Strength of Crack Healed-Specimen and Elastic Wave Characteristics of $Al_2O_3$/SiC Composite Ceramics,' Transactions of the KSME(A), Vol. 31, No. 4, pp. 425-431 https://doi.org/10.3795/KSME-A.2007.31.4.425
  14. Ki Woo Nam, Mi Kyung Kim, Hae Sook Kim, Jin Wook Kim and Seok Hwan Ahn, 2006, 'Bending Strength of Si3N4 Monolithic and $Si_3N_4$/SiC Composite Ceramics and Elastic Wave Characteristics by Wavelet Analysis,' International Journal of Modern Physics B, Vol. 20, No. 25-27, pp. 4279-4284 https://doi.org/10.1142/S0217979206041227
  15. Nam, K. W., Kim, M. K., Park, S. W., Ahn, S. H. and Kim, J. S.. 2007, 'Crack Healing Behavior and Bending Strength of $Si_3N_4$/SiC Composite Ceramics by $SiO_2$ Colloidal,' Materials Science and Engineering: A, Vol. 471, pp. 102-105 https://doi.org/10.1016/j.msea.2007.03.005
  16. Kim, M. K., Kang, S. B., Ahn, S. H. and Nam, K. W.. 2007, 'Strength and Surface Morphology of $Si_3N_4$ Composite Ceramics Coated with $SiO_2$ Gel,' Solid State Phenomena, Vols. 124-126, pp. 719-722 https://doi.org/10.4028/www.scientific.net/SSP.124-126.719
  17. Kim, M. K., Park, S. W., Son, C. S., Ahn, S. H. and Nam, K. W., 2006, 'Crack Healing and Bending Strength of $Si_3N_4$/SiC Composite Ceramics by Additive Powder $TiO_2$,' Proceeding of The KSME 2006 Fall Annual Meeting, pp. 149-152
  18. Park, S. W., Kim, M. K., Ahn, S. H. and Nam, K. W., 2006, 'Bending Strength of Crack Healed $Si_3N_4/$SiC Composite Ceramics by $SiO_2$ Colloidal,' 2006 Annual Conference & International Workshops of the 20th Anniversary of the Korean Society of Ocean Engineers, pp. 166-168
  19. Nam, K. W., Park, S. W. and Ahn, S. H., 2008, 'Crack-healing Behavior and Strength Properties of SiC Ceramics According to Additives $SiO_2$,' Proceeding of Korea Ocean Science Technique Council 2007 Joint Meeting, p. 2430

Cited by

  1. Nano-Colloid vol.38, pp.10, 2014, https://doi.org/10.3795/KSME-A.2014.38.10.1117