Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes

  • Received : 2009.03.19
  • Accepted : 2009.05.28
  • Published : 2009.06.30

Abstract

Effect of activation energy and crystallization kinetics of polyethylenes (PEs) on the dynamics and stability has been investigated by changing rheological properties and crystallization rate in film casting process. The effect of changes of these properties has been shown using a typical example of short-chain branching (SCB) in linear polyethylenes. SCBs in linear polymers generally lead to the increase of the flow activation energy, and to the decrease of the crystallization rate, making polymer viscosity lower in the case of equivalent molecular weight. In general, the increment of the crystallinity of polymers under partially crystallized state helps to enhance the process stability by increasing tension, and lower fluid viscoelasticity possesses the stabilizing effect for linear polymers. It has been found that the fluid viscoelasticity plays a key role in the control of process stability than crystallization kinetics which critically depends on the cooling to stabilize the film casting process of short-chain branched polymers operated under the low aspect ratio condition.

Keywords

References

  1. Anturkar, N. R. and A. Co, 1988, Draw resonance in film casting of viscoelastic fluids: a linear stability analysis, J. Non-Newtonian Fluid Mech. 28, 287 https://doi.org/10.1016/0377-0257(88)87002-2
  2. Bubeck, R. A., 2002, Structure-property relationships in metallocene polyethylenes, Mat. Sci. Eng. R, 39, 1 https://doi.org/10.1016/S0927-796X(02)00074-8
  3. Chiu, F.-C., Y. Peng and Q. Fu, 2002, Bulk crystallization kinetics of metallocene polyethylenes with well-controlled molecular weight and short chain branch content, J. Polym. Res., 9, 175 https://doi.org/10.1023/A:1021339608313
  4. Iyengar, V. R. and A. Co, A., 1996, Film casting of a modified Giesekus fluid: stability analysis, Chem. Eng. Sci., 51, 1417 https://doi.org/10.1016/0009-2509(95)00316-9
  5. Jung, H. W., J. S. Lee and J. C. Hyun, 2002, Sensitivity analysis of melt spinning process by frequency response, Korea-Australia Rheol. J., 14, 57
  6. Jung, H. W. and J. C. Hyun, 2006, Instabilities in extensional deformation polymer processing, in Rheology Reviews edited by D.M. Binding & K. Walters, British Society of Rheology
  7. Kanai, T. and G. A. Campbell, 1999, Film Processing, Hanser publishers, Cincinnati
  8. Kim, J. M., J. S. Lee, D. M. Shin, H. W. Jung and J. C. Hyun, 2005, Transient solutions of the dynamics of film casting process using a 2-D viscoelastic model, J. Non-Newtonian Fluid Mech., 132, 53 https://doi.org/10.1016/j.jnnfm.2005.10.002
  9. Kim, Y. S., C. I. Chung, S. Y. Lai and K. S. Hyun, 1996, Melt rheological and thermodynamic properties of polyethylene homopolymer and poly(ethylene/-olefin) copolymers with respect to molecular composition and structure, J. Appl. Polym. Sci., 59, 125 https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1<125::AID-APP18>3.0.CO;2-Z
  10. Kwon, Y. and Leonov, A. L., 1995, Stability constraints in the formulation of viscoelastic constitutive-equations, 58, 25
  11. Lee, J. S., H. W. Jung, H.-S. Song, K.-Y. Lee and J. C. Hyun, 2001, Kinematic waves and draw resonance in film casting process, J. Non-Newtonian Fluid Mech., 101, 43 https://doi.org/10.1016/S0377-0257(01)00155-0
  12. Lee, J. S., H. W. Jung and J. C. Hyun, 2003, Frequency response of film casting process, Korea-Australia. Rheol. J., 15, 91
  13. Munstedt, H., S. Kurzbeck and L. Egersdorfer, 1998, Influence of molecular structure on rheological properties of polyethylenes. Part II. Elongational behavior, Rheol. Acta, 37, 21 https://doi.org/10.1007/s003970050087
  14. Muslet, I. A. and M. R. Kamal, 2004, Computer simulation of the film blowing process incorporating crystallization and viscoelasticity, J. Rheol., 48, 525 https://doi.org/10.1122/1.1718500
  15. Park, S. J. and R. G. Larson, 2005, Modeling the linear viscoelastic properties of metallocene-catalyzed high density polyethylenes with long-chain branching, J. Rheol., 49, 523 (2005) https://doi.org/10.1122/1.1853382
  16. Phan-Thien, N., 1978, A nonlinear network viscoelastic model, J. Rheol., 22, 259 https://doi.org/10.1122/1.549481
  17. Shin, D. M., J. S. Lee, H. W. Jung and J. C. Hyun, 2005, Analysis of the Effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method, Korea-Australia Rheol. J., 17, 63
  18. Shin, D. M., J. S. Lee, J. M. Kim, H. W. Jung and J. C. Hyun, 2007, Transient and steady-state solutions of 2-D viscoelastic nonisothermal simulation model of film casting process via finite element method, J. Rheol., 51, 393 https://doi.org/10.1122/1.2714781
  19. Silagy, D., Y. Demay and J.-F. Agassant, 1996, Study of the stability of the film casting process, Polym. Eng. Sci., 36, 2614 https://doi.org/10.1002/pen.10661
  20. Silagy, D., Y. Demay and J.-F. Agassant, 1998, Stationary and stability analysis of the film casting process,' J. Non-Newtonian Fluid Mech., 79, 563 https://doi.org/10.1016/S0377-0257(98)00119-0
  21. Stadler, F. J., C. Gabriel and H. Munstedt, 2007, Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear, Macromol. Chem. Phys., 208, 2449 https://doi.org/10.1002/macp.200700267
  22. Stadler, F. J. and H. Munstedt, 2008, Terminal viscous and elastic properties of linear ethane/-olefin copolymers, J. Rheol., 52, 697 https://doi.org/10.1122/1.2892039
  23. Vega, J. F. A. Santamaria, A. Munoz-Escalona and P. Lafuente, 1998, Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes, Macromolecules, 31, 3639 https://doi.org/10.1021/ma9708961
  24. Wood-Adams, P. and Costeux, S. 2001, Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching, Macromolecules, 34, 6281 https://doi.org/10.1021/ma0017034
  25. Yeow Y. L, 1974, On the stability of extending film: a model for the film casting process, J. Fluids Mech., 66, 613 https://doi.org/10.1017/S0022112074000395
  26. Zavinska, O., J. Claracq and S. Eijndhoven, 2008, Non-isothermal film casting: Determination of draw resonance, J. Non-Newtonian Fluid Mech., 151, 21 https://doi.org/10.1016/j.jnnfm.2008.01.003