Comparison of Morphology and Thermal Properties of Poly($\varepsilon$-caprolactone) (PCL) Webs Prepared by Solution/Melt Electrospinning Method

용액/용융 전기방사법으로 제조된 Poly($\varepsilon$-caprolactone)(PCL) 웹의 형태 및 열적 특성 비교

  • Cho, Byoung-Min (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Nam, Young-Sik (BK21 Educational Program of Fusion Technology for Industrial Textiles, Chungnam National University) ;
  • Oh, Tae-Hwan (School of Textiles, Yeungnam University) ;
  • Jung, Jong-Ho (Huvis R&D Institute) ;
  • Park, Won-Ho (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University)
  • 조병민 (충남대학교 바이오응용화학부 유기소재.섬유시스템공학) ;
  • 남영식 (충남대학교 BK21 기술융합형 산업용섬유 인력양성사업팀) ;
  • 오태환 (영남대학교 섬유패션학부) ;
  • 정종호 (휴비스 R&D 센터) ;
  • 박원호 (충남대학교 바이오응용화학부 유기소재.섬유시스템공학)
  • Received : 2008.12.20
  • Accepted : 2009.02.09
  • Published : 2009.04.30

Abstract

PCL fiber web was fabricated through solution/melt electrospinning of PCL resin. PCL nanofibers were obtained by solution electrospinning of 10.5 wt% PCL solution and the resulting average fiber diameters were varied with the range of 150-500 nm. Melt electrospinning method has the advantage of solvent-free process and it is more eco-friendly than solution electrospinning process. The relationship between processing conditions and fiber morphologies of melt electrospun fibers was investigated and it was found that the temperature in the syringe and flow rate were the main factors in determining the average fiber diameter. In addition, thermal properties of PCL fibers obtained by solution/melt electrospinning were compared with PCL chip.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, 'Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Abricated via Fused Deposition Modeling', J Biomed Mater Res, 2001, 55, 203-216 https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
  2. M. C. Serrano, R. Pagani, M. Vallet-Reg$\acute{i}$, J. Pe$\tilde{n}$a, A. R$\acute{a}$mila, I. Izquierdo, and M. T. Portol$\acute{e}$s, 'In vitro Biocompatibility Assessment of Poly($\varepsilon$-caprolactone) Films Using L929 Mouse Fibroblasts', Biomaterials, 2004, 25, 5603-5611 https://doi.org/10.1016/j.biomaterials.2004.01.037
  3. G. C. Rutledge, M. Y. Shin, S. B. Warner, A. Buer, M. Grmler, and S. C. Ugbolue, 'A Fundamental Investigation of the Formation and Properties of Electrospun Fibers', NTC Annual Report, M98-D01, 2001
  4. J. M. Deitzel, J. Kleinmeyer, D. Harrks, and N. C. Beck Tan, 'The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles', Polymer, 2001, 42, 261-272 https://doi.org/10.1016/S0032-3861(00)00250-0
  5. W. J. Li, R. Tuli, X. X. Huang, P. Laquerriere, and R. S. Tuan, 'Multilineage Differentiation of Human Mesenchymal Stem Cells in a Three-dimensional Nanofibrous Scaffold', Biomaterials, 2005, 26, 5158-5166 https://doi.org/10.1016/j.biomaterials.2005.01.002
  6. K. Fujihara, M. Kotaki, and S. Ramakrishna, 'Guided Bone Regeneration Membrane Made of Polycaprolactone/calcium Carbonate Composite Nano-fibers', Biomaterials, 2005, 26, 4139-4147 https://doi.org/10.1016/j.biomaterials.2004.09.014
  7. I. K. Kwon, S. Kidoaki, and T. Matsuda, 'Electrospun Nano- to Microfiber Fabrics Made of Biodegradable Copolyesters: Structural Characteristics, Mechanical Properties and Cell Adhesion Potential', Biomaterials, 2005, 26, 3929-3939 https://doi.org/10.1016/j.biomaterials.2004.10.007
  8. J. Zeng, X. S. Chen, Q. Z. Liang, X. L. Xu, and X. B. Jing, 'Enzymatic Degradation of Poly(l-lactide) and Poly(epsiloncaprolactone) Electrospun Fibers', Macromol Biosci, 2004, 4, 1118-1125 https://doi.org/10.1002/mabi.200400092
  9. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, 'Novel Fabricated Matrix via Electrospinning for Tissue Engineering', J Biomed Mater Res Part B: Appl Biomater, 2005, 72B, 117-124 https://doi.org/10.1002/jbm.b.30122
  10. Y. Z. Zhang, H. W. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, 'Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds', J Biomed Mater Res Part B: Appl Biomater, 2005, 72B, 156-165 https://doi.org/10.1002/jbm.b.30128
  11. W. J. Li, R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan, 'A Three-dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells', Biomaterials, 2005, 26, 599-609 https://doi.org/10.1016/j.biomaterials.2004.03.005
  12. C. M. Hsu and S. Shivkumar, 'Nano-sized Beads and Porous Fiber Constructs of Poly(epsilon-caprolactone) Produced by Electrospinning', J Mater Sci, 2004, 39, 3003-3013 https://doi.org/10.1023/B:JMSC.0000025826.36080.cf
  13. C. M. Hsu and S. Shivkumar, 'N-dimethylformamide Additions to the Solution for the Electrospinning of Poly(epsilon-caprolactone) Nanofibers', Macromol Mater Eng, 2004, 289, 334-340 https://doi.org/10.1002/mame.200300224
  14. M. Shin, O. Ishii, T. Sueda, and J. P. Vacanti, 'Contractile Cardiac Grafts Using a Novel Nanofibrous Mesh', Biomaterials, 2004, 25, 3717-3723 https://doi.org/10.1016/j.biomaterials.2003.10.055
  15. M. Shin, H. Yoshimoto, and J. P. Vacanti, 'In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold', Tissue Eng, 2004, 10, 33-41 https://doi.org/10.1089/107632704322791673
  16. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, 'Biological Response of Chondrocytes Cultured in Threedimensional Nanofibrous Poly(epsilon caprolactone) Scaffolds', J Biomed Mater Res Part A, 2003, 67A, 1105-1114 https://doi.org/10.1002/jbm.a.10101
  17. J. Zeng, X. S. Chen, X. Y. Xu, Q. Z. Liang, X. C. Bian, L. X. Yang, and X. B. Jing, 'Ultrafine Fibers Electrospun from Biodegradable Polymers', J Appl Polym Sci, 2003, 89, 1085-1092 https://doi.org/10.1002/app.12260
  18. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, 'A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering', Biomaterials, 2003, 24, 2077-2082 https://doi.org/10.1016/S0142-9612(02)00635-X
  19. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, 'Characterization of Nano-structured Poly(epsilon-caprolactone) Nonwoven Mats via Electrospinning', Polymer, 2003, 44, 1287-1294 https://doi.org/10.1016/S0032-3861(02)00820-0
  20. Y. You, S. J. Lee, B. M. Min, and W. H. Park, 'Effect of Solution Properties on Nanofibrous Structure of Electrospun Poly(lactic-co-glycolic acid)', J Appl Polym Sci, 2006, 99, 1214-1221 https://doi.org/10.1002/app.22602