Characterization of an Extracellular Xylanase from Bacillus sp. HY-20, a Bacterium in the Gut of Apis mellifera

꿀벌(Apis mellifera)의 장내 세균인 Bacillus sp. HY-20이 분비하는 Xylanase의 특성

  • 이란희 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 김도영 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 한미경 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 오현우 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 함수진 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 박두상 (한국생명공학연구원 생물자원센터) ;
  • 배경숙 (한국생명공학연구원 생물자원센터) ;
  • 석대은 (충남대학교 약학과) ;
  • 신동하 ((주)인섹트바이오텍) ;
  • 손광희 (한국생명공학연구원 산업바이오소재연구센터) ;
  • 박호용 (한국생명공학연구원 산업바이오소재연구센터)
  • Received : 2009.11.04
  • Accepted : 2009.11.19
  • Published : 2009.12.31

Abstract

A xylan-decomposing bacterium, HY-20, was isolated from the gut of a honeybee, Apis mellifera, and identified as Bacillus sp. The extracellular GH11 xylanase (XylP) gene (687-bp) of strain HY-20 encoded a protein of 228 amino acids with a deduced molecular mass of 25,522 Da and a calculated pI of 9.33. The primary structure of XylP was 97% identical to that of B. pumilus xylanase (GenBank accession no.: AY526092) that has not been characterized yet. The recombinant His-tagged enzyme (rXylP) overexpressed in Escherichia coli BL21 harboring pET-28a(+)/xylP was purified to electrophoretic homogeneity by cation exchange and gel permeation chromatographies. The purified enzyme exhibited the highest catalytic activity toward birchwood xylan at pH 6.5 and $50^{\circ}C$ and retained approximately 50% of its original activity when pre-incubated at $55^{\circ}C$ for 15 min. The recombinant enzyme was completely inactivated by $Hg^{2+}$ (1 mM) and N-bromosuccinimide (5 mM), while its activity was slightly stimulated by approximately 10% in the presence of $Mn^{2+}$ (1 mM), $Fe^{2+}$ (1 mM), and sodium azide (5 mM). rXylP was able to efficiently degrade various polymeric xylose-based substrates but PNP-sugar derivatives and glucose-based polymers were not susceptible to the enzyme.

꿀벌(Apis mellifera)의 장으로부터 xylan분해능이 우수한 세균 HY-20을 분리하였고, Bacillus 속으로 동정하였다. 분리균주 HY-20의 세포 외 GH11 xylanase (XylP) 유전자 (687-bp)는 25,522 Da의 분자량과 9.33의 pI 값을 갖는 228개의 아미노산으로 구성된 단백질을 인코딩하는 것으로 확인되었으며, 지금까지 특성규명이 이루어지지 않은 B. pumilus xylanase (GenBank accession no.: AY526092)의 아미노산 서열과 97%의 상동성을 보였다. pET-28a(+)/xylP를 포함하고 있는 Escherichia coli BL21 균주에서 과발현 된 His-tagged XylP (rXylP)는 cation exchange 및 gel permeation chromatography를 통해 순수하게 분리 정제 되었으며, $50^{\circ}C$의 온도와 pH 6.5 조건에서 반응할 때 birchwood xylan에 대해 가장 높은 가수분해 활성을 나타내었다. rXylP는 15분간 $55^{\circ}C$에 노출될 때 본래 활성의 약 50%를 잃어버리는 전형적인 중온성 효소의 특성을 보였으며, $Hg^{2+}$ (1mM)와 N-bromosuccinimide (5mM)에 노출될 때 완전히 불활성화 되었고, $Mn^{2+}$ (1 mM), $Fe^{2+}$ (1mM) 및 sodium azide (5 mM)에 의해서는 활성이 약 10% 증가될 수 있는 것으로 밝혀졌다. 한편, rXylP는 xylose유래 다당류는 효율적으로 분해하였지만 PNP-sugar 유도체 및 glucose 유래 다당류는 분해하지 못하였다.

Keywords

References

  1. Brennan, Y., W.N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernández, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G.P. Hazlewood, E.J. Mathur, J.M. Short, D.E. Robertson, and B.A. Steer. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70, 3609-3617 https://doi.org/10.1128/AEM.70.6.3609-3617.2004
  2. Brune, A. 1998. Termite guts: the world’s smallest bioreactors. Trends Biotechnol. 16, 16-21 https://doi.org/10.1016/S0167-7799(97)01151-7
  3. Cazemier, A.E., J.C. Verdoes, A.J.J. Van Ooyen, and H.J.M. Op den Camp. 1999. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl. Environ. Microbiol. 65, 4099-4107
  4. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph. D. Thesis, University of Newcastle, UK
  5. Heo, S.Y., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16, 1753-1759
  6. Irwin, D., E.D. Jung, and D.B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60, 763-770
  7. Jung, Y.J., J.K. Lee, C.G. Sung, T.K. Oh, and H.K. Kim. 2003. Nonionic detergent-induced activation of an esterase from Bacillus megaterium 20-l. J. Mol. Catal. B: Enzym. 26, 223-229 https://doi.org/10.1016/j.molcatb.2003.06.006
  8. Khandeparkar, R.D.S. and N.B. Bhosle. 2006. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 4214 when grown in solid-state fermentation. Enzyme Microb. Technol. 39, 732-742 https://doi.org/10.1016/j.enzmictec.2005.12.008
  9. Kim, D.Y., M.K. Han, J.S. Lee, H.W. Oh, D.S. Park, D.H. Shin, K.H. Son, K.S. Bae, and H.Y. Park. 2009. Isolation and characterization of a cellulase-free endo-$\beta$-1,4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Proc. Biochem. 44, 1055-1059 https://doi.org/10.1016/j.procbio.2009.05.005
  10. Kim, D.Y., M.K. Han, H.W. Oh, D.S. Park, S.J. Kim, S.G. Lee, D.H. Shin, K.H. Son, K.S. Bae, and H.Y. Park. 2010. Catalytic properties of a GH10 endo-$\beta$-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J. Mol. Catal. B: Enzym. 62, 32-39 https://doi.org/10.1016/j.molcatb.2009.08.015
  11. Kim, D.Y., M.K. Han, D.S. Park, J.S. Lee, H.W. Oh, D.H. Shin, T.S. Jeong, S.U. Kim, K.S. Bae, K.H. Son, and H.Y. Park. 2009. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75, 7275-7279 https://doi.org/10.1128/AEM.01075-09
  12. Kim, H.J., D.Y. Kim, J.S. Nam, K.S. Bae, and Y.H. Rhee. 2003. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83, 183-189 https://doi.org/10.1023/A:1023395527073
  13. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  14. MacLeod, A.M., T. Lindhorst, S.G. Withers, and R.A.J. Warren. 1994. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants. Biochemistry 33, 6371-6376 https://doi.org/10.1021/bi00186a042
  15. Oh, H.W., S.Y. Heo, D.Y. Kim, D.S. Park, K.S. Bae, and H.Y. Park. 2008. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek 93, 437-442 https://doi.org/10.1007/s10482-007-9210-2
  16. Polizeli, M.L.T.M., A.C.S. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, and D.S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577-591 https://doi.org/10.1007/s00253-005-1904-7
  17. Shallom, D. and Y. Shoham. 2003. Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219-228 https://doi.org/10.1016/S1369-5274(03)00056-0
  18. Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1-7 https://doi.org/10.1111/j.1574-6968.2000.tb08925.x