Characterization of a Fibrinolytic Enzyme Produced by Bacillus subtilis MJ-226 Isolated from Meju

전통 메주에서 분리한 Bacillus subtilis MJ-226이 생산하는 혈전용해효소의 특성

  • Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University)
  • 임성미 (동명대학교 식품공학과)
  • Received : 2009.09.18
  • Accepted : 2009.10.12
  • Published : 2009.12.31

Abstract

Among 27 Bacillus sp. isolated from Meju, a traditional Korean soybean fermented food, a strain MJ-226 was selected due to its strong fibrinolytic activity, and it was identified to be Bacillus subtilis MJ-226 according to morphological and biochemical characterization and sugar utilization. The fibrinolytic enzyme of B. subtilis MJ-226 was maximally produced by cultivating in the Tryptic Soy Broth (TSB) for 24~26 h at $37^{\circ}C$, and the enzymes activity was promoted with adding glucose, fructose, peptone or yeast extract to TSB. The fibrinolytic enzyme was stable at the range of pH from 6.0 to 8.0, and between 35 and $40^{\circ}C$. Also, when the crude enzyme was exposed to various metal ions and chemical inhibitors for 12 h, the enzyme stability was maintained by $MnSO_4$, $CaCl_2$, KCl, and NaCl. However, the stability was destroyed by treatment with $CuSO_4$, $MgSO_4$, $ZnSO_4$, $FeSO_4$, and $BaCl_2$, and the enzyme was unstable in the presence of chemical inhibitors such as iodoacetic acid, leupeptin, phenylmethanesulphonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), thiourea, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) and ethylenediaminetetraacetic acid (EDTA).

전통 메주로부터 plasmin의 혈전용해 활성보다 약 58% 더 높은 활성을 나타내는 MJ-226을 분리하여 동정한 결과, Bacillus subtilis와 유사한 형태학적, 생화학적 및 당 발효능을 나타내었다. B. subtilis MJ-226은 Tryptic Soy Broth (TSB) 배지 상에서 최대의 혈전용해효소 활성을 나타내었고, $37^{\circ}C$에서 24~26시간 배양했을 때 가장 높은 활성을 나타내었고, TSB 배지 내에 glucose와 fructose 2.0%와 peptone 및 yeast extract 1.0% 각각을 첨가한 경우 활성이 증가되었다. 하지만 lactose, sucrose, beef extract, casein 및 tryptophan 등에 의해선 활성이 오히려 감소되었다. B. subtilis MJ-226이 생산하는 혈전용해효소는 pH 6.0~8.0 및 온도 $35\sim40^{\circ}C$에서 매우 안정하였으며, 또한 $MnSO_4$, $CaCl_2$, KCl 및 NaCl 5 mM 농도의 금속이온에 대해서도 비교적 안정함을 유지하였다. 그러나 $CuSO_4$, $MgSO_4$, $ZnSO_4$, $FeSO_4$$BaCl_2$에 등의 금속이온과 iodoacetic acid, leupeptin, phenylmethanesulphonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), thiourea, trans-1,2-diaminocyclohexane-N,N,N',N'- tetraacetic acid (CDTA) 및 ethylenediaminetetraacetic acid (EDTA) 등의 저해제들과 반응한 경우에는 매우 불안정한 것으로 나타났다.

Keywords

References

  1. 길지은, 김기남, 박인식. 1998. 새로운 혈전용해효소의 생성 및 특성 : 청국장에서 분리한 Bacillus sp. KP-6408로부터 효소 생성의 최적조건. 한국식품영양과학회지 27, 51- 56
  2. 김두영, 이은탁, 김상달. 2003. 한국재래간장 발효균 Bacillus subtilis K7 유래의 혈전용해 Protease의 정제 및 특성. 한국응용생명화학회 46, 176-182
  3. 김상숙, 이주훈, 안용선, 김정환, 강대경. 2003. 청국장으로부터 분리한 Bacillus amyloliquefaciens D4-7이 분비하는 혈전용해효소의 특성 및 열안정성에 미치는 첨가물의 효과. 한국미생물생명공학회 31, 271-279
  4. 김승호. 1998. 된장의 기능성에 대한 새로운 연구방향. 한국콩연구회 15, 8-15
  5. 박건영. 1997. 한국 전통발효식품(된장, 김치)의 발암안정성, 항돌연변이 및 항암 기능성. 식품과학과 산업. 식품과학과산업 30, 89-102
  6. 유천권, 서원상, 이철수, 강상모. 1998. 청국장에서 분리한 Bacillus subtilis K-54이 분비하는 혈전용해효소의 정제 및 특성. 한국미생물·생명공학회 26, 507-514
  7. 이창호, 김원찬, 이인구, 박희동. 2008. 메주 제조시 Bacillus subitilis의 첨가가 재래식 된장의 발효에 미치는 영향. 한국식품저장유통학회 15, 598-605
  8. 최경근, 최승필, 함승시, 이득식. 2003. 메주발효에 관여하는 우량균주의 분리, 동정 및 생육특성. 한국식품영양과학회 32, 818-824 https://doi.org/10.3746/jkfn.2003.32.6.818
  9. 현광욱, 이종수, 함정희, 최신양. 2005. 재래식 된장으로부터 혈전용해활성을 나타내는 세균의 분리 및 동정. 한국미생물·생명공학회지 33, 24-28
  10. Astrup, T. and S. Millertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  11. Baruah, D.B., R.N. Dash, M.R. Chaudhari, and S.S. Kadam. 2006. Plasminogen activators: a comparison. Vascular Pharmacol. 44, 1-9 https://doi.org/10.1016/j.vph.2005.09.003
  12. Christopher, J.O. and R. Elosua. 2008. Cardiovascular risk factors. insights from framingham heart study. Rev. Esp. Cardiol. 61, 299-310 https://doi.org/10.1157/13116658
  13. Ehrlich, H.J., N.U. Bang, S.P. Little, S.R. Jaskunas, B.J. Weigel, L.E. Mattler, and C.S. Harms. 1987. Biological properties of a kringless tissue plasminogen activator mutant. Fibrinolysis 1, 75-77 https://doi.org/10.1016/0268-9499(87)90013-0
  14. Gardell, S.J., L.T. Duong, R.E. Diehl, J.D. York, T.R. Hare, R.B. Register, J.W. Jacobs, R.A.F. Dixon, and P.A. Friedman. 1989. Isolation, characterization and cDNA cloning of a vampire bat salivary plasminogen activator. J. Biol. Chem. 264, 17947-17952
  15. Georgianne, V. and E.V. Giardina. 2002. Benefits, adverse effects and drug interactions of herbal therapies with cardiovascular effects. J. Am. College Cardiol. 39, 1083-1095 https://doi.org/10.1016/S0735-1097(02)01749-7
  16. Jung, Y.S. 1963. Microbiological studies of soysauce: identification and isolation of bacteria from traditional soysauce. Kor. J. Microbiol. 1, 30-35
  17. Karin, S.G. 2009. Risk factors for cardiovascular disease in women. Maturitas 63, 186-190 https://doi.org/10.1016/j.maturitas.2009.02.014
  18. Kim, H.K., G.T. Kim, D.K. Kim, W.A. Choi, S.H. Park, Y.K. Jeong, and I.S. Kong. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84, 307-312 https://doi.org/10.1016/S0922-338X(97)89249-5
  19. Kim, N.Y., E.J. Song, D.Y. Kwon, H.P. Kim, and M.Y. Heo. 2008. Antioxidant and antigenotoxic activities of Korean fermented soybean. Food Chem. Toxicol. 46, 1184-1189 https://doi.org/10.1016/j.fct.2007.12.003
  20. Kim, S.R. and D.J. Huh. 1954. Studies on improvement of traditional condiment. Nat. Defense Sci. Inst. 56, 9277-9281
  21. Ko, J.A., S.Y. Koo, and H.J. Park. 2008. Effects of alginate microencapsulation on the fibrinolytic activity of fermented soybean paste (Cheonggukjang) extract. Food Chem. 111, 921-924 https://doi.org/10.1016/j.foodchem.2008.05.005
  22. Ko, J.H., J.P. Yan, L. Zhu, and Y.P. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. 137, 65-74 https://doi.org/10.1016/j.cca.2003.11.008
  23. Lim, S.M. and D.S. Im. 2009. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19, 178-186 https://doi.org/10.4014/jmb.0804.269
  24. Lim, S.M., G.J. Lee, S.M. Park, D.H. Ahn, and D.S. Im. 2006. Characterization of Lactobacillus cellobiosus D37 isolated from soybean paste as a probioitic with anti-cancer and antimicrobial properties. Food Sci. Biotechnol. 15, 792-798
  25. Liu, J., J. Xing, T. Chang, Z. Ma, and H. Liu. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochem. 40, 2757-2762 https://doi.org/10.1016/j.procbio.2004.12.025
  26. Lowe, G.D.O. and A. Rumley. 1999. Coagulation, fibrinolysis and cardiovascular disease. Fibrinolysis Proteol. 13, 91-98 https://doi.org/10.1016/S0268-9499(99)90084-X
  27. Martin-Hernandez, M.C., A.C. Alting, and F.A. Exterkate. 1994. Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Appl. Microbiol. Biotechnol. 40, 828-834 https://doi.org/10.1007/BF00173983
  28. Naik, D. and S.R. Baral. 2009. Purification and characterization of fibrinolytic thermostable meatalloprotease from and alkalophilic Bacillus subtilis-CSN. New Biotechnol. 255, S90-S91
  29. Peng, Y., Q. Huang, R. Zhang, and Y. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. 134, 45-52 https://doi.org/10.1016/S1096-4959(02)00183-5
  30. Yoshinori, M., A.H.K. Wong, and B. Jiang. 2005. Fibrinolytic enzymes in Asian traditional fermented foods. Food Re. Int. 38, 243-250 https://doi.org/10.1016/j.foodres.2004.04.008