Bacterial Community Dynamics during Composting of Food Wastes

음식물 쓰레기 퇴비화 과정에 따른 세균군집 구조의 변화

  • Shin, Ji-Hye (Department of Microbiology, Chungbuk National University) ;
  • Lee, Jin-Woo (Department of Microbiology, Chungbuk National University) ;
  • Nam, Ji-Hyun (Department of Microbiology, Chungbuk National University) ;
  • Park, Se-Yong (Department of Civil Engineering, Hanyang University) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • Received : 2009.05.12
  • Accepted : 2009.06.12
  • Published : 2009.06.30

Abstract

Composting is a biological process converting solid organic waste into valuable materials such as fertilizer. The change of bacterial populations in a composting reactor of food waste was investigated for 2 months. Based on shifts in temperature profile, the composting process could be divided into the first phase ($2^{\circ}C\sim55^{\circ}C$), the second phase ($55^{\circ}C\sim97^{\circ}C$), and the third phase ($50^{\circ}C\sim89^{\circ}C$). The number of total bacteria was $1.66\times10^{11}$ cell/g, $0.29\times10^{11}$ cell/g, and $0.28\times10^{11}$ cell/g in the first, second, and third stages, respectively. The proportions of thermophiles increased from 33% to 89% in the second stage. T-RFLP analysis and nucleotide sequencing of 16S rRNA gene demonstrated that the change of bacterial community structure was coupled with shifts in composting stages. The structure of bacterial community in the ultra-thermophilic second stage reflected that of seeding starter. The major decomposers driving the ultra-thermophilic composting were identified as phylotypes related to Bacillus and Pseudomonas.

퇴비화 과정은 유기성 폐기물을 비료와 같은 유용한 자원으로 전환하는 생물학적 과정이다. 본 연구에서는 음식 물 쓰레기를 2달 동안 퇴비화시켜 세균군집의 변화를 조사하였다. 온도의 변화를 기준으로 하여 퇴비화 과정은 1단계($2\sim55^{\circ}C$), 2단계($55\sim97^{\circ}C$), 3단계($50\sim89^{\circ}C$)로 나뉘었다. 각 단계별 총세균수는 1단계 $1.66\times10^{11}$ cell/g, 2단계 $0.29\times10^{11}$ cell/g, 3단계 $0.28\times10^{11}$ cell/g으로 관찰되었다. 또한 총세균수에 대한 고온미생물의 비율은 초기에 33% 였으나 2단계 시료에서 최대비율인 89%로 증가하였다. 16S rRNA 유전자를 대상으로 T-RFLP 방법과 염기서열 분석방법을 이용하여 세균군집의 구조가 퇴비화 과정에 따라 변화됨을 확인할 수 있었다. 초고온인 2단계의 세균군집의 발달은 스타터 접종의 영향을 받았으며, Bacillus 및 Pseudomonas와 유연관계가 가까운 세균군집이 퇴비화 과정을 이끄는 주요 미생물임을 확인하였다.

Keywords

References

  1. 환경부. 2008. 2007 전국 폐기물 발생 및 처리 현황
  2. 환경부. 2006. 수질오염공정시험방법
  3. Boulos, L., M. Prevost, B. Barbeau, J. Coallier, and R. Desjardins. 1999. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37, 77-86 https://doi.org/10.1016/S0167-7012(99)00048-2
  4. Chun, J., A. Huq, and R.R. Colwell. 1999. Analysis of 16S-23S rRNA intergenic Spacer Regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208
  5. Debosz, K., S.O. Petersen, L.K. Kure, and P. Ambus. 2002. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil Ecol. 19, 237-248 https://doi.org/10.1016/S0929-1393(01)00191-3
  6. Demharter, W. and R. Hensel. 1989. Bacillus thermocloacae sp. nov., a new thermophilic species from sewage. Syst. Appl. Microbiol. 11, 272-276 https://doi.org/10.1016/S0723-2020(89)80025-6
  7. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  8. Felsenstein, J. 2002. PHYLIP (Phylogeny Inference Package) version 3.6a3. Distributed by the author, Department of Genome Sciences, University of Washington, Seattle, USA.
  9. Fogarty, A.M. and O.H. Tuovinen. 1991. Microbiological degradation of pesticides in yard waste composting. Microbiol. Rev. 55, 225-233
  10. Hobbie, J.E., R.J. Daley, and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228
  11. Ishii, K., M. Fukui, and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89, 768-777 https://doi.org/10.1046/j.1365-2672.2000.01177.x
  12. Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, pp. 21-132. In H.N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.
  13. Juni, E. and G.A. Heym. 1986. Psychrobacter immobilis gen. nov., sp. nov.: Genospecies composed of Gram-negative, aerobic, oxidase-positive coccobacilli. Int. J. Syst. Bacteriol. 36, 388-391 https://doi.org/10.1099/00207713-36-3-388
  14. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, England
  15. Miller, D.N., J.E. Bryant, E.L. Madsen, and W.C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715-4724
  16. Nam, I.H., Y.S. Chang, H.B. Hong, and Y.E. Lee. 2003. A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol. Appl. Microbiol. Biotechnol. 62, 284-290 https://doi.org/10.1007/s00253-003-1255-1
  17. Oshima, T. and T. Moriya. 2008. A preliminary analysis of microbial and biochemical properties of high-temperature compost. Ann. N.Y. Acad. Sci. 1125, 338-344 https://doi.org/10.1196/annals.1419.012
  18. Pedro, M.S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J. Biosci. Bioeng. 91, 159-165 https://doi.org/10.1016/S1389-1723(01)80059-1
  19. Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D.D. Clercq, J. Coosemans, H. Insam, and J. Swings. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53, 349-410
  20. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  21. Suler, D.J. and M.S. Finstein. 1977. Effect of temperature, aeration, and moisture on CO2 formation in bench-scale, continuously thermophilic composting of solid waste. Appl. Environ. Microbiol. 33, 345-350
  22. Takaku, H., S. Kodaira, A. Kimoto, M. Nashimoto, and M. Takagi. 2006. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101, 42-50 https://doi.org/10.1263/jbb.101.42
  23. Tang, J.C., A. Shibata, Q. Zhou, and A. Katayama. 2007. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng. 4, 321-328 https://doi.org/10.1263/jbb.104.321
  24. Thompson, J.D., T.J. Gilson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  25. Tuomela, M., M. Vikman, A. Hatakka, and M. Itävaara. 2000. Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72, 169-183 https://doi.org/10.1016/S0960-8524(99)00104-2
  26. Wiley, B.B. and S.C. Westerberg. 1969. Survival of human pathogens in composted sewage. Appl. Microbiol. 18, 994-1001
  27. Yamada, T., A. Suzuki, H. Ueda, Y. Ueda, K. Miyauchi, and G. Endo. 2008. Successions of bacterial community in composting cow dung wastes with or without hyperthermophilic pre-treatment. Appl. Microbiol. Biotechnol. 81, 771-781 https://doi.org/10.1007/s00253-008-1736-3