Comparative Analysis of the Community of Culturable Bacteria Associated with Sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP

16S rDNA-RFLP에 의한 Spirastrella abata와 Spirastrella panis 해면에 서식하는 배양가능한 공생세균 군집의 비교

  • Received : 2009.05.27
  • Accepted : 2009.06.22
  • Published : 2009.06.30

Abstract

A cultivation-based approach was employed to compare the culturable bacterial diversity associated with two phylogenetically closely related marine sponges, Spirastrella abata and Spirastrella panis, which have geologically overlapping distribution patterns. The bacteria associated with sponge were cultivated using MA medium supplemented with 3% sponge extracts. Community structures of the culturable bacteria of the two sponge species were analyzed with PCR-RFLP (restriction fragment length polymorphism) based on 16S rDNA sequences. The RFLP fingerprinting of 16S rDNA digested with HaeIII and MspI, revealed 24 independent RFLP types, in which 1-5 representative strains from each type were partially sequenced. The sequence analysis showed >98.4% similarity to known bacterial species in public databases. Overall, the microbial populations of two sponges investigated were found to be the members of the classes; Alphaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. The Alphaproteobacteria were predominant in the bacterial communities of the two sponges. Gammaproteobacteria represented 38.5% of bacterial community in S. abata. Whereas only 1.6% of this class was present in S. panis. Bacillus species were dominat in S. panis. Bacillus species were found to be 44.3% of bacterial species in S. panis, while they were only 9.7% in S. abata. It is interesting to note that Planococcus maritimus (8.1%, phylum Firmicutes) and Psychrobacter nivimaris (28.9%, phylum Gammaproteobacteria) were found only in S. abata. This result revealed that profiles of bacterial communities from the sponges with a close phylogenetic relationship were highly species-specific.

계통적으로 근연하며 지리적 분포가 유사한 두 종의 Spirastrella 속의 해양 해면, S. panis와 S. abata의 배양 가능한 공생세균 군집구조를 16S rDNA-RFLP 방법에 의해 분석하였다. 공생세균의 배양은 해면추출물 3%를 포함하는 MA 배지를 사용하였다. 증폭된 16S rDNA의 RFLP (restriction fragment length polymorphism) 분석을 위한 제한효소로 HaeIII와 MspI을 이용하였으며, 그 결과 24개의 RFLP type을 구별할 수 있었다. 각 패턴별로 1~5개의 분리균주를 선별하여 부분 염기서열 분석 결과, 알려진 세균 종과 98.4% 이상의 유사도를 나타내었으며 2종의 Spirastrella 해면으로부터 분리된 세균들은 모두 Alphaproteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteria 4개의 강(class)에 포함되었다. Alphaproteobacteria는 S. abata에서 39.3%, S. panis에서 47.6%가 관찰되어 두 해면에서 우점하는 세균 군집이었다. Gammaproteobacteria의 경우 S. abata에서 38.5%로 관찰된 반면 S. panis에서 1.6%의 아주 적은 비율로 관찰되었다. 또한 Bacillus (phylum Firmicutes) 종은 S. abata에서 9.7%를 나타낸 반면, S. panis에서는 44.3%의 분포를 나타내었다. Planococcus maritimus (8.1%, phylum Firmicutes)와 Psychrobacter nivimaris (28.9%, phylum Gammaproteobacteria)는 S. abata에서만 관찰되어 이들은 S. abata에 특이적인 세균 종임을 알 수 있었다. 같은 장소에 서식하는 계통적으로 근연한 두 종의 해면에서 공생세균의 군집 구조는 차이가 큰 것으로 나타났다.

Keywords

References

  1. Alam, N., W. Wang, J.G. Hong, C.O. Lee, K.S. Im, and J.H. Jung. 2002. Cytotoxic sphingosine 4-Sulfates from the sponge Spirastrella abata. J. Nat. Prod. 65, 944-945 https://doi.org/10.1021/np010312v
  2. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis, Univ. Newcastle, Newcastle upon Tyne, UK.
  3. Dai, J., Y. Liu, Y.D. Zhou, and D.G. Nagle. 2007. Hypoxia-selective antitumor agents: norsesterterpene peroxides from the marine sponge Diacarnus levii preferentially suppress the growth of tumor cells under hypoxic conditions. J. Nat. Prod. 70, 130-133 https://doi.org/10.1021/np0604883
  4. Dalisay, D.S. and T. Molinski. 2009. Structure elucidation at the nanomole scale. 2. Hemi-phorboxazole A from Phorbas sp. Org. Lett. 11, 1967-1970 https://doi.org/10.1021/ol9004189
  5. Enticknap, J.J., M. Kelly, O. Peraud, and R.T. Hill. 2006. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and dvidence for vertical transmission via sponge Larvae. Appl. Environ. Microbiol. 72, 3724-3732 https://doi.org/10.1128/AEM.72.5.3724-3732.2006
  6. Friedrich, A.B., J. Hacker, I. Fischer, P. Proksch, and U. Hentschel. 2001. Temporal variations of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113 https://doi.org/10.1111/j.1574-6941.2001.tb00888.x
  7. Guangyi, W. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551 https://doi.org/10.1007/s10295-006-0123-2
  8. Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker, and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431-4440 https://doi.org/10.1128/AEM.68.9.4431-4440.2002
  9. Kaeberlein, T., K. Lewis, and S.S. Epstein. 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296, 1127-1129 https://doi.org/10.1126/science.1070633
  10. Kennedy, J., P. Baker, C. Piper, P.D. Cotter, M. Walsh, M.J. Mooij, M.B. Bourke, M.C. Rea, P.M. O'Connor, R.P. Ross, C. Hill, F. O'Gara, J.R. Marchesi, and A.D.W. Dobson. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396 https://doi.org/10.1007/s10126-008-9154-1
  11. Lafi, F.F., M.J. Garson, and J.A. Fuerst. 2005. Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the great barrier reef display similar phylogenetic diversity. Microb. Ecol. 50, 213-220 https://doi.org/10.1007/s00248-004-0202-8
  12. Levina, E.V., A.I. Kalinovsky, P.V. Andriyashenko, P.S. Dmitrenok, D.L. Aminin, and V.A. Stonik. 2005. Phrygiasterol, a cytotoxic cyclopropane-containing polyhydroxysteroid, and related compounds from the pacific starfish Hippasteria phrygiana. J. Nat. Prod. 68, 1541-1544 https://doi.org/10.1021/np049610t
  13. Li, Z., L. He, and X. Miao. 2008. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472 https://doi.org/10.1007/s00284-007-9035-2
  14. Muscholl-Silberhorn, A., V. Thiel, and J.F. Imhoff. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb. Ecol. 55, 94-106 https://doi.org/10.1007/s00248-007-9255-9
  15. Park, S.H., K.K. Kwon, D.S. Lee, and H.K. Lee. 2002. Morphological diversity of marine microorganisms on different media. J. Microbiol. 40, 161-165
  16. Ridley, C.P., D.J. Faulkner, and M.G. Haygood. 2005. Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl. Environ. Microbiol. 71, 7366-7375 https://doi.org/10.1128/AEM.71.11.7366-7375.2005
  17. Selvin, J. 2009. Exploring the antagonistic producer Streptomyces MSI051: Implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr. Microbiol. 58, 459-463 https://doi.org/10.1007/s00284-008-9343-1