Community Structure of Bacteria Associated with Two Marine Sponges from Jeju Island Based on 16S rDNA-DGGE Profiles

16S rDNA-DGGE를 이용한 2종의 제주도 해양 해면의 공생세균의 군집 구조

  • 박진숙 (한남대학교 생명공학과) ;
  • 심정자 (한남대학교 생명과학과) ;
  • 안광득 (일본 이화학연구소, BioResource Center)
  • Received : 2009.06.08
  • Accepted : 2009.06.24
  • Published : 2009.06.30

Abstract

Culture-independent 16S rDNA-DGGE profiling and phylogenetic analysis were used to examine the predominant bacterial communities associated with the two sponges, Dictyonella sp. and Spirastrella abata from Jeju island. The culture-independent approach involved extraction of total bacterial DNA, PCR amplification of the 16S ribosomal DNA using primer pair 341f-GC and 518r, and separation of the amplicons on a denaturing gradient gel. Denaturing gradient gel electrophoresis banding patterns indicated 8 and 7 bands from the two sponge species, Dictyonella sp. and Spirastrella abata, respectively. There were not common major bands in two different sponges. Comparative sequence analysis of variable DGGE bands revealed from 93% to 98% similarity to the known published sequences. The dominant bacterial group of Dictyonella sp. belonged to uncultured Gammaproteobacteria, while, that of Spirastrella abata belonged to uncultured Alphaproeobacteria and Firmicutes. DGGE analysis indicated predominant communities of the sponge-associated bacteria differ in the two sponges from the same geographical location. This result revealed that bacterial community profiles of the sponges were host species-specific.

제주도에 서식하는 2종의 해양 해면, Dictyonella sp.와 Spirastrella abata의 공생세균 군집구조를 16S rDNA-DGGE(denaturing gradient gel electrophoresis) 방법에 의해 분석하였다. 해면으로부터 total genomic DNA를 추출하여 GC clamp가 추가된 세균에 특이적인 341f primer와 518r primer를 이용하여 16S rRNA gene의 V3 부위를 증폭한 후 DGGE 전기 영동하고 재증폭하여 염기서열을 분석하였다. 그 결과 Dictyonella sp.에서 8개, Spirastrella abata에서 7개의 band를 확인할 수 있었다. 공통된 주요 band가 없는 패턴을 나타내었으며, DGGE band로부터 DNA를 추출하여 부분 염기서열을 분석한 결과, NCBI에 등록된 서열들과 93%~98%의 유사도를 나타내었다. Dictyonella sp.의 주요 해면 공생세균은 uncultured Gammaproteobacteria, Spirastrella abata의 경우 uncultured Alphaproteobacteria, Firmicutes에 각각 포함되어 해면 종에 따른 숙주 특이적 분포를 보이는 것으로 나타났다.

Keywords

References

  1. 고소라, 박성주, 안치용, 최애란, 이전숙, 김희식, 윤병대, 오희목. 2004. DGGE를 이용한 대청호 수화 발생시기의 세균군집 분석. 한국미생물학회지 40, 205-210
  2. Amann, R., W. Ludwig, and K.H. Schleifer. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169
  3. Dai J., Y. Liu, Y.D. Zhou, and D.G. Nagle. 2007. Hypoxia-selective antitumor agents: norsesterterpene peroxides from the marine sponge Diacarnus levii preferentially suppress the growth of tumor cells under hypoxic conditions. J. Nat. Prod. 70, 130-133 https://doi.org/10.1021/np0604883
  4. Dalisay, D.S. and T. Molinski. 2009. Structure elucidation at the nanomole scale. 2. Hemi-phorboxazole A from Phorbas sp. Org. Lett. 11, 1967-1970 https://doi.org/10.1021/ol9004189
  5. Diez, B., C. Pedros-Alio , T.L. Marsh, and R. Massana. 2001. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl. Environ. Microbiol. 67, 2942-2951 https://doi.org/10.1128/AEM.67.7.2942-2951.2001
  6. Friedrich, A.B., J. Hacker, I. Fischer, P. Proksch, and U. Hentschel. 2001. Temporal variations of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105-113 https://doi.org/10.1111/j.1574-6941.2001.tb00888.x
  7. Guangyi, W. 2006. Diversity and biotechnological potential of the sponge -associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551 https://doi.org/10.1007/s10295-006-0123-2
  8. Hentschel, U., K.M. Usher, and M.W. Taylor. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55, 167-177 https://doi.org/10.1111/j.1574-6941.2005.00046.x
  9. Hardoim, C.C.P., R. Costa, F.V. Araujo, E. Hajdu, R. Peixoto, U. Lins, A.S. Rosado, and J.D. van Elsas. 2009. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 75, 3331-3343 https://doi.org/10.1128/AEM.02101-08
  10. Kennedy, J., P. Baker, C. Piper, P.D. Cotter, M. Walsh, M.J. Mooij, M.B. Bourke, M.C. Rea, P.M. O'Connor, R.P. Ross, C. Hill, F. O'Gara, J.R. Marchesi, and A.D.W. Dobson. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish Waters. Mar. Biotechnol. 11, 384-396 https://doi.org/10.1007/s10126-008-9154-1
  11. Kim, T.K. and J.A. Fuerst. 2006. Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environ. Microbiol. 8, 1460-1470 https://doi.org/10.1111/j.1462-2920.2006.01040.x
  12. Lafi, F.F., M.J. Garson, and J.A. Fuerst. 2005. Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb. Ecol. 50, 213-220 https://doi.org/10.1007/s00248-004-0202-8
  13. Lee, O.O., Y.H. Wong, and P.-Y. Qian. 2009. Inter- and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl. Environ. Microbiol. 75, 3513-3521 https://doi.org/10.1128/AEM.00002-09
  14. Li, Z.-Y., L.M. He, J. Wu, and Q. Jiang. 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol. 329, 75-85 https://doi.org/10.1016/j.jembe.2005.08.014
  15. Mangano, S., L. Michaud, C. Caruso, M. Brilli, V. Bruni, R. Fani, A. Lo Giudice. 2009. Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Res. Microbiol. 160, 27-37 https://doi.org/10.1016/j.resmic.2008.09.013
  16. Mohamed, N., J.J. Enticknap, J.E. Lohr, S.M. McIntosh, and R.T. Hill 2008. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ. Microbiol. 74, 1209-1222 https://doi.org/10.1128/AEM.02047-07
  17. Mohamed, N., M.V. Rao, M.T. Hamann, M. Kelly, and R.T. Hill. 2008. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. Microbiol. 74, 4133-4143 https://doi.org/10.1128/AEM.00454-08
  18. Muscholl-Silberhorn, A., V. Thiel, and J.F. Imhoff. 2008. Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb. Ecol. 55, 94-106 https://doi.org/10.1007/s00248-007-9255-9
  19. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700
  20. Piel, J. 2004. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21, 519-538 https://doi.org/10.1039/b310175b
  21. Schabereiter-Gurtner, C., S. Maca, S. Rulleke, K. Nigl, J. Lukas, A. Hirschl, W. Lubitz, and T. Barisani-Asenbauer. 2001. 16S rDNA-based identification of bacteria from conjunctival swabs by PCR and DGGE fingerprinting. Invest. Ophthalmol. 42, 1164-1171
  22. Selvin, J. 2009. Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr. Microbiol. 58, 459-463 https://doi.org/10.1007/s00284-008-9343-1
  23. Selvin, J., R. Gandhimathi, G.S. Kiran, S.S. Priya, T.R. Ravji, and T.A. Hema. 2009. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria. Helgol Mar Res. DOI 10.1007/s10152-009-0153-z
  24. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4. Mol. Biol. Evol. 24, 1596-1599 https://doi.org/10.1093/molbev/msm092
  25. Taylor, M.W., P.J. Schupp, I. Dahllof, S. Kjlleberg, and P.D. Steinberg. 2004. Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ. Microbiol. 6, 121-130 https://doi.org/10.1046/j.1462-2920.2003.00545.x
  26. Taylor, M.W., P.J. Schupp, R. de Nys, S. Kjelleberg, and P.D. Steinberg. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433 https://doi.org/10.1111/j.1462-2920.2004.00711.x
  27. Temmernann, R., I. Scheirlinck, G. Huys, and J. Swings. 2003. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69, 220-226 https://doi.org/10.1128/AEM.69.1.220-226.2003
  28. Thiel, V., S.C. Neulinger, T. Staufenberger, R. Schmaljohann, and J.F. Imhoff. 2007. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol. Ecol. 59, 47-63 https://doi.org/10.1111/j.1574-6941.2006.00217.x
  29. Thiel, V., S. Leininger, R. Schmaljohann, F. Brummer, and J.F. Imhoff. 2007. Sponge-specific bacterial associations of the mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb. Ecol. 54, 101-111 https://doi.org/10.1007/s00248-006-9177-y
  30. Thoms, C., M. Horn, W. Wagner, U. Hentschel, and P. Proksch. 2003. Monitoring microbial diversity and natural products profiles of the sponge Aplysina cavernicola following transplantation. Mar. Biol. 142, 685-692 https://doi.org/10.1007/s00227-002-1000-9
  31. Webster, N.S., A.P. Negri, M.H.G. Munro, and C.N. Battershill. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300 https://doi.org/10.1111/j.1462-2920.2004.00570.x
  32. Wichels, A., S. Wurtz, H. Dopke, C. Schutt, and G. Gerdts. 2006. Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol. Ecol. 56, 102-118 https://doi.org/10.1111/j.1574-6941.2006.00067.x