독도에 서식하는 가지과식물로부터 분리된 근권세균의 특성

Characterization of Rhizobacteria Isolated from Family Solanaceae Plants in Dokdo Island

  • 함미선 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • 박유미 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • 성혜리 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소) ;
  • ;
  • 류충민 (한국생명공학연구원 유전체연구센터) ;
  • 박승환 (한국생명공학연구원 유전체연구센터) ;
  • 김사열 (경북대학교 생명과학부, 경북대학교 울릉도.독도연구소)
  • Ham, Mi-Seon (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Park, Yu-Mi (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Sung, Hye-Ri (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Sumayo, Marilyn (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University) ;
  • Ryu, Choong-Min (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB) ;
  • Park, Seung-Hwan (Laboratory of Microbial Genomics, Systems Microbiology Research Center, KRIBB) ;
  • Ghim, Sa-Youl (School of Life Sciences and Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University)
  • 투고 : 2009.05.02
  • 심사 : 2009.06.04
  • 발행 : 2009.06.28

초록

독도에 자생하고 있는 야생 가지과 식물근권세균들의 특성을 밝히기 위해 까마중을 채집하였다. 까마중 근권으로부터 총 44종의 포자형성세균 혹은 질소고정세균을 분리하였다. 이 균주들은 16S rDNA 염기서열을 이용하여 부분 동정하였다. PGPR로써의 특성을 밝히기 위해 옥신 생산능, 인 가용능, 그리고 Siderophore 형성능을 측정하였다. 식물 생장호르몬인 옥신을 형성하는 균주는 19종, 난분해성 인을 분해할 수 있는 균주는 8종, 식물병원균을 억제하는 siderophore를 형성할 수 있는 균주는 13종으로 확인되었다. 우리나라에서 널리 재배되고 있는 가지과식물인 담배와 고추에 직접 적용하여, 식물의 생장 촉진 효과 및 식물 전신유도저항성 효과를 확인하였다. 특히 KUDC1009는 식물의 생장 촉진 효과 그리고 식물병원균에 대한 저항성을 증가시키는 등 다기능의 능력을 가지는 것을 확인할 수 있었다. 독도의 근권세균들은 다양한 스트레스 환경하에서 야생 까마중이 생존하는데 많은 도움을 주는 것을 추측 할 수 있었다.

To characterize plant root-associated bacteria in wild plant family Solanaceae, Solanum nigrum L. plants were collected in Dokdo island. Forty four strains of nitrogen-fixing or spore-forming bacteria were isolated from rhizosphere of Solanum nigrum L. plants. Among these, 19 strains were able to produce auxin. Thirteen strains of these produced siderophore as determined by color reaction on CAS-blue plate, 8 strains were able to solubilize phosphate. The 16S rDNA genes of the isolated bacteria were amplified and sequenced. Model plants, pepper and tobacco, were established in order to evaluate the bacterial capacities eliciting growth promotion and induced systemic resistance. The plants treated with strain KUDC1009 were more resistant and capable of growth-promotion than control plants when challenged by either Xanthomonas axonopodis pv. vesicatoria or Erwinia carotovora sub. carotovora strain SCC1. Rhizobacteria isolated from Dokdo island can promote growth of wild type Solanum nigrum L. under much environmental stresses.

키워드

참고문헌

  1. Andrey, A. B., I. C. Dodd, N. Hontzeas, J. C. Theobald, V. I. Safronova, and W. J. Davies. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New phytol. 181: 413-423 https://doi.org/10.1111/j.1469-8137.2008.02657.x
  2. Arora, N. K., S. C. Kang, and D. K. Maheshwari. 2001. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Marcrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci. 81: 673-677
  3. B. Hameeda, G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphatesolubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242 https://doi.org/10.1016/j.micres.2006.05.009
  4. Bangera, M. G. and L. S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4 diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155-3163
  5. Broadbent, P., K. F. Baker, N. Franks, and J. Holland. 1977. Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil. Phytopathology 67: 1027-1034
  6. Choi, E. H., S. E. Lee, K. S. Yoon, D. K. Kwon, J. K. Shon, S. H. Park, M. S. Han, and S.-Y. Ghim. 2003. lsolation of nitrogen-fixing bacteria from gramineous crops and measurement of nitrogenase activity. Kor. J. Microbiol. Biotechnol. 31: 18-24
  7. Delany, I., M. M. Sheehan, A. Fenton, S. Bardin, S. Aarons, and F. O'gara. 2000. Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146: 537-546 https://doi.org/10.1099/00221287-146-2-537
  8. Frey-Klett, P., M. Chavatt, M.-L. Clausse, S. Courrier, C. L. Roux, J. Raaijmakers, M. G. Martinotti, J.-C. Pierrat, and J. Garbaye. 2005. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New phytol. 165: 317-328 https://doi.org/10.1111/j.1469-8137.2004.01212.x
  9. Glickmann, E. and Yves D. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796
  10. Gorden, S. A. and R. P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant physiol. 26: 192-195 https://doi.org/10.1104/pp.26.1.192
  11. Heil, M. and I. Baldwin. 2002. Costs of induced resistance: Emerging experimental support for a slippery concept. Trend. Plant Sci. 7: 61-67 https://doi.org/10.1016/S1360-1385(01)02186-0
  12. Jeong, J. H., D. E. Jeong, S. J. Lee, K. J. Seul, C. M. Ryu, S. H. Park, and S.-Y. Ghim. 2007. The effects of wood vinegar on growth and resistance of peppers. Kor. J. Microbiol. Biotechnol. 35: 41-44
  13. K. S. Jagadeesh, J. H. Kulkarni, and P. U. Krishnaraj. 2001. Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Curr. Sci. 81: 882
  14. Kang, S. H., H. S. Cho, H. Cheong, C. M. Ryu, J. F. Kim, and S. H. Park. 2007. Two bacterial endophytes eliciting both plant growth promotion and plant defence on pepper (Capsicum annuum L.) J. Microbiol. Biotechnol. 17: 96-103
  15. Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Envrion. Microbiol. 6: 1244-1251 https://doi.org/10.1111/j.1462-2920.2004.00658.x
  16. Lee, H. J., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. Hwangbo, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  17. Lee, S. C. and B. K. Hwang. 2005. Induction of some defense- related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221: 790-800 https://doi.org/10.1007/s00425-005-1488-6
  18. Lee, S. J., S. E. Lee, K. J. Seul, S. H. Park, and S.-Y. Ghim. 2006. Plant growth-promoting capabilities of diazotrophs from wild gramineous crops. Kor. J. Microbiol. Biotechnol. 34: 78-82
  19. Loper, J. E. and Schroth, M. N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76: 386-389 https://doi.org/10.1094/Phyto-76-386
  20. Martha, E. T., A. Willems, A. Abril, Ana-Mara Planchuelo, Ral Rivas, D. Ludea, P. F. Mateos, E. Martnez-Molina, and E. Velzquez. 2005. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl. Envrion. Microbiol. 71: 1318-1327 https://doi.org/10.1128/AEM.71.3.1318-1327.2005
  21. Mohamed, A. Farag, C. M. Ryu, L. W. Sumner, and P. W. Pare. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262-2268 https://doi.org/10.1016/j.phytochem.2006.07.021
  22. Murashing T. and Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Planta 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Murphy, J. F., M. S. Reddy, C. M. Ryu, J. W. Klopper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Virology 10: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  24. Padidam, M. 2003. Chemically regulated gene expression in plants. Curr. Opin. Plant Biol. 6: 169-177 https://doi.org/10.1016/S1369-5266(03)00005-0
  25. Park, M. S., C. W. Kim, J. C. Yang, H. S. Lee, Y. S. Shin, S. H. Kim, and T. M. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol, Res. 160: 127-133 https://doi.org/10.1016/j.micres.2004.10.003
  26. Persello-Cartieaux, F., L. Nussaume, and C. Robaglia. 2003. Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26: 189-199 https://doi.org/10.1046/j.1365-3040.2003.00956.x
  27. Ramamoorty, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induced of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and disease. Crop Protection 20: 1-11 https://doi.org/10.1016/S0261-2194(00)00056-9
  28. Research Institute for Ullengdo & Dokdo Islands. 2008. The plant of Dokdo island. pp 166-221. Nature of Dokdo island. Kyungpook National University Press. Daegu. Korea
  29. Ryu, C. M., C. H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420 https://doi.org/10.1046/j.1469-8137.2003.00883.x
  30. Ryu, C. M., J. F. Murphy, K. S. Mysore, and J. W. Kloepper. 2004. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid dependent signaling pathway. Plant J. 39: 381-392 https://doi.org/10.1111/j.1365-313X.2004.02142.x
  31. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei, P. W. Pare, and J. W. Kloepper. 2002. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
  32. S, Prez-Miranda, N. Cabirol, R. George-Tllez, L. S. Zamudio- Rivera, and F.J. Fernndez 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70: 127-131 https://doi.org/10.1016/j.mimet.2007.03.023
  33. Salme, T. and E. Gerhart H. Wagner. 1999. The plantgrowth- promoting rhizobacterium Paenobacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. MPMI 12: 951-959 https://doi.org/10.1094/MPMI.1999.12.11.951
  34. Schwyn, B. and J. B. Neilans. 1987. University chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 46-52
  35. Stohl, E. A., J. L. Milner, and J. Handelsman. 1999. Zwittermicin A biosynthetic cluster. Gene 237: 403-411 https://doi.org/10.1016/S0378-1119(99)00315-7
  36. Thianmann, K. V. 1937. On the nature of inhibition caused by auxin. Am. J. Bot. 24: 407-412 https://doi.org/10.2307/2436422
  37. Woo, S. M. and S. D. Kim. 2007. Confirmation of nonsiderophore antifungal substance and cellulase from Bacillus licheniformis K11 containing antagonistic ability and plant grow promoting activity. J. Life Sci. 17: 983-989 https://doi.org/10.5352/JLS.2007.17.7.983