Tolypocladium inflatum을 이용한 Cyclosporin A 발효에서 아미노산과 유기질소원의 영향

Effect of Amino Acids and Organic Nitrogen Sources on Cyclosporin A Fermentation by Tolypocladium inflatum

  • 김정근 (한국산업기술대학교 생명화학공학과) ;
  • 이병규 (유한양행 중앙연구소) ;
  • 장석원 (영동대학교 Bio RIC 및 의생명과학과) ;
  • 박용덕 (영동대학교 Bio RIC 및 의생명과학과) ;
  • 노용택 (영동대학교 Bio RIC 및 의생명과학과)
  • Kim, Jeong-Keun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Lee, Byung-Kyu (Yuhan Research Institute) ;
  • Chang, Seog-Won (Bio RIC and Department of Medico-Life Science, Youngdong University) ;
  • Park, Yong-Deok (Bio RIC and Department of Medico-Life Science, Youngdong University) ;
  • Rho, Yong-Taek (Bio RIC and Department of Medico-Life Science, Youngdong University)
  • 투고 : 2008.07.30
  • 심사 : 2009.05.17
  • 발행 : 2009.06.28

초록

Cyclosporin A 분자의 구성 아미노산 가운데 분지 아미노산인 valine, leucine, isoleucine, threonine 등에 대한 첨가 효과를 확인한 결과, L-valine 첨가구는 비첨가구보다 cyclosporin A 역가는 3.7배, cyclosporin A 구성비율은 약 40%로 가장 크게 증가하였다. 그리고 L-valine의 최적 농도는 0.75%로서 비첨가구에 비하여 cyclosporin A 역가는 3배, cyclosporin A 구성비율은 30% 증가하였다. 그러나 L-valine 1% 단독 첨가구보다 L-valine 0.5%, L-leucine 0.5% 혼합구가 cyclosporin A 역가에서는 약 16% 우수하였고, cyclosporin A 구성비율에서는 약 5% 증가하였다. 또한 다양한 유기질소원의 첨가 효과를 확인한 결과, meat peptone인 Bacto-peptone 첨가구는 유기질소원 비첨가구보다 cyclosporin A의 역가는 약 2배, cyclosporin A 구성비율은 약 13% 증가하였고, Bacto-peptone의 최적농도는 1%인 것으로 확인되었다. 그러나 Casiton, Tryptone, NZ-amine 등 우유 유래 유기질소원 첨가구의 경우, 비첨가구보다 cyclosporin A 역가가 오히려 약 10-20% 감소하는 현상을 보여 cyclosporin A 생합성을 억제하는 것으로 확인되었다. 본 연구에서 최적화된 배지 조건에서, 모균주인 T. inflatum ATCC 34921와 UV 조사로 얻어진 4종의 cyclosporin A 고생산 변이주 4종의 생산성을 비교한 결과, 변이주 YHC-004의 cyclosporin A 역가는 3,430 mg/L로 모균주인 ATCC 34921보다 약 7.1배로 증가하였지만, 모균주와 변이주 4종의 cyclosporin A 구성비율은 약 93-94% 범위에서 비슷한 값을 보였다.

Cyclosporin, an immunosuppressant, is a representative group of biologically active secondary metabolites produced by the fungus Tolypocladium inflatum. The amount and ratio of cyclosporin derivatives in the culture broth are an important factors for the production of cyclosporin A and the purification in the industrial process. Therefore, we studied the effect of amino acids and complex organic nitrogen sources using Tolypocladium inflatum mutants on the productivity of cyclosporin A and the ratio of cyclosporin derivatives. Overproducing mutant YHC-004 having seven times higher productivity than mother strain's could be obtained through the artificial mutation by UV irradiation. The concentration and kind of organic nitrogens and amino acids shows the profound effect on the productivity of cyclosporin A and ratio of cyclosporin derivatives. As a result, it was possible to raise the productivity and the ratio of cyclosporin A up to 3,430 mg/L and 93% respectively, but on the other hand the other cyclosporin derivatives decreased less than 2% in the culture broth.

키워드

참고문헌

  1. Abdel-Fattah, Y. R., H. E. Enshasy, M. Anwar, H. Omar, E. Abolmagd, and R. A. Zahra. 2007. Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture. J. Microbiol. Biotechnol. 17: 1930-1936
  2. Agathos, S. N., J. W. Marshall, C. Moratiti, R. Parekh, and C. Madhosingh. 1986. Physiological and genetic factors for process development of cyclosporine fermentations. J. Ind. Microbiol. 1: 39-47 https://doi.org/10.1007/BF01569415
  3. Agathos, S. N., C. Madhosingh, J. W. Marshall, and J. Lee. 1987. The fungal production of cyclosporin. Ann. N.Y. Acad. Sci. 506: 657-662 https://doi.org/10.1111/j.1749-6632.1987.tb23863.x
  4. Billich, A. and R. Zocher. 1987. Enzymatic synthesis of cyclosporin A. J. Biol. Chem. 262: 17258-17259
  5. Borel, J. F. 1986. Cyclosporin and its future. pp 9-18. In Cyclosporins, Progress in allergy, vol. 38, Karger, Basel
  6. Chun, G-T. and S. N. Agathos. 1991. Comparative studies of physiological and environmental effects on the production of cyclosporin A in suspended and immobilized cells of Tolypocladium inflatum. Biotechnol. Bioeng. 37: 256-265 https://doi.org/10.1002/bit.260370308
  7. Dreyfuss, M., E. Harri, H. Hofmann, H. Kobel, W. Pacheand, and H. Tscherter. 1976. Cyclosporin A and C - New metabolites from Trichoderma polysporum. Eur. J. Appl. Microbiol. 3: 125-133 https://doi.org/10.1007/BF00928431
  8. El Enshasy H., Y. Abdel-Fattah, A. Atta, H. Omar, S. Abou, El Magd, R. A. Zahra, M. Anwar. 2008. Kinetics of cell growth and cyclosporin A production by Tolypocladium inflatum when scaling up from shake flask to bioreactor. J. Microbiol. Biotechnol. 18: 128-134
  9. Fang, J. R., X. D. Tang, L. Y. Ren, Q. Lin, and X. Z. Huang. 1990. The effect on the biosynthesis of cyclosporin A by the addition of amino acids. Clin. J. Antibiot. 15: 140-141
  10. Issac, C. E., A. Johnes, and M. A. Pickard. 1990. The production of cyclosporins by Tolypocladium niveum strains. Antimicrob. Agents Chemother. 34: 121-127 https://doi.org/10.1128/AAC.34.1.121
  11. Kobel, H. and R. Traber. 1982. Directed biosynthesis of cyclosporins. Eur. J. Appl. Microbiol. Biotechnol. 14: 237-240 https://doi.org/10.1007/BF00498470
  12. Kreuzig, F. 1984. High speed liquid chromatography with conventional instruments for the determination of cyclosporin A, B, C, and D in fermentation broth. J. Chromatogra. 290: 181-186 https://doi.org/10.1016/S0021-9673(01)93572-1
  13. Lee, J. and S. N. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Lett. 11: 77-82 https://doi.org/10.1007/BF01192178
  14. Lee, J. and S. N. Agathos. 1991. Dynamics of L-valine in relation to the production of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 34: Appl. Microbiol. Biotechnol https://doi.org/10.1007/BF00180580
  15. Lee, M. J., H. N. Lee, K. Han, and E. S. Kim. 2008. Spore inoculum optimization to maximize cyclosporin A production in Tolypochladium niveum. J. Microbiol. Biotechnol. 18: 913-917
  16. Margaritis, A. and P. S. Chahal. 1989. Development of a fructose based medium for biosynthesis of cyclosporin A by Beauveria nivea. Biotechnol. Lett. 11: 765-768 https://doi.org/10.1007/BF01026093
  17. Sekar, C. and K. Balaraman. 1998. Optimization studies on the production of ctcosporin A by solid state fermentation. Bioprocess Eng. 18: 293-296 https://doi.org/10.1007/s004490050444
  18. Traber, R., H. Hofmann, and H. Kobel. 1988. Cyclosporins - new analogs by precursor directed biosynthesis. J. Antibiot. 42: 591-596
  19. Wenger, R. M. 1984. Synthesis of cyclosporin. Helv. Chim. Acta 67: 502-506 https://doi.org/10.1002/hlca.19840670220
  20. Zocher, R., N. Madry, H. Peeters, and H. Kleinkauf. 1984. Biosynthesis of cyclosporin A. Phytochemistry 23: 549-551 https://doi.org/10.1016/S0031-9422(00)80378-7