Rhodobacter capsulatus hemA 유전자 발현 대장균에 의한 5-Aminolevulinic Acid 생산의 최적화

Optimizing the Production of 5-Aminolevulinic Acid by Recombinant Escherichia coli Containing the Rhodobacter capsulatus hemA Gene

  • 투고 : 2009.04.10
  • 심사 : 2009.05.11
  • 발행 : 2009.06.28

초록

Rhodobacter capsulatus 유래의 hemA 유전자를 항시발현 벡터(pHCEIIB vector)에 클로닝한 후 과발현시킨 Escherichia coli BLR(DE3) 균주를 사용하여, 5-aminolevulinic acid (ALA) 생산을 위한 적정 배양조건을 조사하였다. ALA 생산을 위한 배양온도는 $37^{\circ}C$보다는 $30^{\circ}C$에서 더 나은 결과를 나타내었다. Glycine 농도가 세포생장에 미치는 영향이 컸으며, 세포생장을 저해하지 않고ALA를 고농도로 생산하기 위한 적정 glycine 농도는 5-10 g/L 수준이었다. Succinic acid의 적정 첨가수준은 10-20 g/L이었으며, succinic acid의 일부를 glutamate로 대체할 경우에 ALA의 생산량을 향상시키는 효과가 있었다. 한편, 배지 중의 glucose 첨가는 ALA 생산성을 저하시키는 결과를 초래하였다. 이상과 같은 배양 조건 최적화를 통한 jar-fermentor 발효실험을 통하여, 고가의 유도제(IPTG)나 ALA dehydratase inhibitor를 첨가하지 않고도 8.2 g/L 수준의 고농도 ALA를 얻을 수 있었다.

Recombinant Escherichia coli BLR(DE3) harboring the hemA gene from Rhodobacter capsulatus under the control of a constitutive promoter, which we constructed previously, was used for the extracellular production of 5-aminolevulinic acid (ALA). The effects of several factors on ALA production were investigated in flask culture. ALA production by the recombinant E. coli was more efficient at $30^{\circ}C$ than $37^{\circ}C$. The glycine concentration had an important effect on cell growth. Glycine and succinic acid concentration of 5-10 and 10-20 g/L, respectively, resulted in high ALA production. In addition, the partial replacement of succinic acid by sodium glutamate increased the ALA production. The ALA production was inhibited by the presence of glucose in the medium. Using the optimal conditions, an ALA concentration of 8.2 g/L was achieved in jar fermentation without an added inducer or ALA dehydratase inhibitor; this is the highest reported concentration.

키워드

참고문헌

  1. Avissar, Y. J. and S. I. Beale. 1989. Identification of the enzymatic basis for $\"{a}$-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J. Bacteriol. 171: 2919-2924 https://doi.org/10.1128/jb.171.6.2919-2924.1989
  2. Beale, S. J. and P. A. Castelfranco. 1974. The Biosynthesis of $\delta$-aminolevulinic acid in higher plants. II. Formation of $^{14}C$-$\delta$-aminolevulinic acid from labeled precursors in greening plant tissue. Plant Physiol. 53: 297-303 https://doi.org/10.1104/pp.53.2.297
  3. Berg, K., P. K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B${\O}$ Engesaeter, E. Angell-Petersen, T. Warloe, N. Frandsen, and A. H$\phi$gset. 2005. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 218: 133-147 https://doi.org/10.1111/j.1365-2818.2005.01471.x
  4. Bykhovsky, V. Y., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin $B_{12}$ biosynthesis. Critical Rev. Biotechnol. 17(1): 21-37 https://doi.org/10.3109/07388559709146605
  5. Chen, Y. J., J. H. Cho, J. S. Yoo, Y. Wang, Y. Huang, I. H. Kim. 2008. Evaluation of ä-aminolevulinic acid on serum iron status, blood characteristics, egg performance and quality in laying hens. Asian-Aust. J. Anim. Sci. 21: 1355-1360 https://doi.org/10.5713/ajas.2008.70634
  6. Choi, C., B.-S. Hong, H.-C. Sung, H.-S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554 https://doi.org/10.1023/A:1005520007230
  7. Choi, H.-P., Y.-M. Lee, C.-W. Yun, and H.-C. Sung. 2008. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J. Microbiol. Biotechnol. 18(6): 1136-1140
  8. Chung S.-Y., K.-K. Seo, K.A. Han, S. H. Cho, K. H. Bak, and J. I. Rhee. 2004. Production and process monitoring of 5-aminolevulinic acid [ALA] by recombinant E. coli. I. Characteristics of ALA production. Kor. J. Biotech. Bioeng. 19(1): 17-26
  9. Dempsey, W. B. 1973. Lysis of Escherichia coli by glycine is potentiated by pyridoxine starvation. J. Bacteriol. 116(1): 373-377
  10. Ferreira, G. and J. Gong. 1995. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J. Bioenerg. Biomembr. 27: 151-159 https://doi.org/10.1007/BF02110030
  11. Fu, W., J. Lin, and P. Cen. 2008. Enhancement of 5- aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technol. 99: 4864-4870 https://doi.org/10.1016/j.biortech.2007.09.039
  12. Halpern, Y. S., A. Ecen-shoshan, and M. Artman. 1964. Effect of glucose on the utilization of succinate and the activity of tricarboxylic acid-cycle enzymes in Escherichia coli. Biochim Biophys Acta. 93: 228-236
  13. Hammets, W., K. H. Schleifer, and O. Kandler. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116(2): 1029-1053
  14. Han, L., M. Doverskog, S. O. Enfors, and L. Häggström. 2002. Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by (13)C NMR spectroscopy. J. Biotechnol. 92(3): 237-249 https://doi.org/10.1016/S0168-1656(01)00373-X
  15. Kang, D.-K., S. S. Kim, W.-J. Chi, S.-K. Hong, H. K. Kim and H. U. Kim. 2004. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the production of 5-aminolevulinic acid. J. Microbiol. Biotechnol. 14(6): 1327-1332
  16. Kikuchi, G., A. Kumor, P. Talmage, and D. Shemin. 1958. The enzymatic synthesis of ä-aminolevulinic acid. J. Biol. Chem. 233: 1214-1219
  17. Lee, D.-H., W.-J. Jun, K.-M. Kim, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using Dglucose. Enz. Microbial Technol. 32: 27-34 https://doi.org/10.1016/S0141-0229(02)00241-7
  18. Lee, D.-H., W.-J. Jum, J.-W. Yoon, H.-Y. Cho, and B.-S. Hong. 2004. Process strategies to enhance the production of 5-aminolevulinic acid with recombinant E. coli. J. Microbiol. Biothchnol. 14(6): 1310-1317
  19. Lee, D.-H., W.-J. Jun, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2005. Effect of culture conditions on production of 5- aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69(3): 470-476 https://doi.org/10.1271/bbb.69.470
  20. Lo, T. C. Y., K. Rayman, and H. D. Sanwal. 1972. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J. Biol. Chem. 247(19): 6323-6331
  21. Mateo, R. D., J. L. Morrow, J. W. Dailey, F. Ji, S. W. Kim. 2006. Use of delta-aminolevulinic acid in swine diet: effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs. Asian-Aust. J. Anim. Sci. 1: 97-101
  22. Mauzerall, D and S. Granick, 1956. The occurance and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219(11): 435-446
  23. Miyachi, N., T. Tanaka, S. Nishikawa, H. Takeya, and Y. Hotta. 1998. Preparation and chemical properties of 5- aminolevulinic acid and its derivatives. Porphyrins 7: 342-347
  24. Nam, T.-W., Y.-H. Park, H.-J. Jeong, S. Ryu, and Y.-J. Seok. 2005. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP·cAMP complex. Nucleic Acids Res. 33(21): 6712-6722 https://doi.org/10.1093/nar/gki978
  25. Poo, H., J. J. Song, S.-P. Hong, Y.-H. Choi, S. W. Yun, J.-H. Kim, S. C. Lee, S.-G. Lee, and M. H. Sung. 2002. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-aaa. Biotechnol. Lett. 24: 1185-1189 https://doi.org/10.1023/A:1016107230825
  26. Qin, G., J. Lin, X. Liu, and P. Cen. 2006. Effect of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102(4): 316-322 https://doi.org/10.1263/jbb.102.316
  27. Rebeiz, C. A., A. Montaxer-Zouhool, H. Hopen, and S, M. Wu. 1984. Photodynamic herbicides. I. Concepts and phenomenology. Enzyme Microb. Technol. 6: 390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  28. Sasikala, Ch., Ch. V. Ramana, and P. R. Rao. 1994. 5- Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459 https://doi.org/10.1021/bp00029a001
  29. Sasaki, K., M. Watnabe, T. Tanake, and T. Tanaka. 2002. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23-29 https://doi.org/10.1007/s00253-001-0858-7
  30. Shin, J.-A., Y. D. Kwon, O.-H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17(9): 1579-1584
  31. Takahashi, Y. 1975. Effect of glucose and cyclic Adenosine 3', 5' monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. J. Biochem. 78(5): 1097-1100
  32. Van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566