통성혐기성 수소생산균주 Rhodopseudomonas sp. MeL 6-2를 이용한 수소생산효율에 미치는 포도당 및 자당 농도의 영향

Effect on the Concentration of Glucose and Sucrose on the Hydrogen Production using by the Facultative Anaerobic Hydrogen Producing Bacterium Rhodopseudomonas sp. MeL 6-2

  • Lee, Eun-Young (Department of Environmental Engineering, University of Suwon)
  • 투고 : 2009.04.04
  • 심사 : 2009.05.15
  • 발행 : 2009.06.28

초록

안양천 공단 주변 슬러지를 미생물 접종원으로 무기염배지에 10 g/L의 자당을 첨가하여 수소 생산 균주 MeL 6-2을 분리하였다. 분리 균주 MeL 6-2은 호기성조건과 혐기성 조건에서 모두 생장하는 통성 혐기성 균주 Rhodopseudomonas sp.였다. 유기성 폐기물 내에 다량 함유되어있는 포도당과 자당의 농도변화가 수소 생산 속도 및 수소 생성효율에 미치는 영향에 대하여 알아보았다. 포도당을 1~12 g/L의 범위로 첨가할 경우 lag phase 없이 생장하였으며, 첨가량이 증가할수록 단위시간 및 단위부피당 수소 생산성 이 증가하여, 10 g/L에서 최대값인 $4.2\;mmol-H_2{\cdot}L^{-1}{\cdot}h^{-1}$을 보이고 그 이후 다소 감소하는 경향을 보였다. 균체량에 대한 수소생산수율은 $0.76{\sim}2.46\;L-H_2{\cdot}g-DCW^{-1}$의 값을 보였으며, 첨가된 기질인 포도당에 의한 수소생산수율은 $2.6{\sim}3.1\;mol-H_2{\cdot}mol-glucose^{-1}$의 범위였다. 자당을 1~12 g/L의 범위에서 첨가할 경우 약 10시간의 지체기 후 원할한 생장을 보였다. 단위시간 및 단위 세포무게 당 비수소 생산속도는 및 수소 생산수율은 자당의 첨가량이 증가할수록 증가하여 각각 $163\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$$4.5\;mol-H_2{\cdot}mol-glucose^{-1}$의 최대값을 보였다.

Hydrogen producing bacterium, strain MeL 6-2 was isolated from the sludge of the factory areas in Anyang through the acclimation in basal salt medium (BSM) supplemented with 10 g/L of sucrose. Isolated strain MeL 6-2 was a facultative anaerobe which could grow in both aerobic and anaerobic environments. An aerobically grown pure culture isolated from enriched culture was analyzed by 16S rDNA sequencing and identified as Rhodopseudomonas sp. MeL 6-2. Effects of the concentrations of glucose and sucrose on the hydrogen production rate and the hydrogen production yield were investigated. When glucose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow without lag phase. An increased glucose concentration increased the specific hydrogen production rate linearly to $4.2\;mmol-H_2{\cdot}L^{-1}{\cdot}h^{-1}$ at 10 g/L, and $60\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$, but decreased slightly as the concentration increased to 12 g/L. The hydrogen production yield was maintained over a range from 2.6 to $3.1\;mol-H_2{\cdot}mol-glucose^{-1}$. When sucrose in the range of 1~12 g/L was supplemented to the BSM, strain MeL 6-2 could grow after ten hours. An increased sucrose concentration increased the specific hydrogen production rate and the hydrogen production yield to $163\;mmol-H_2{\cdot}mg-DCW^{-1}{\cdot}h^{-1}$ and to $4.5\;mol-H_2{\cdot}mol-sucrose^{-1}$, respectively.

키워드

참고문헌

  1. Bisaillon, A., J. Turcot, and P. C. Hallenbeck. 2006. Hydrogen production by continous cultures of Escherichia coli under different nutrient regimes. Int. J. Hydrogen Energy 33: 1465-1470
  2. Chen, C. Y., W. B. Lu, C. H. Liu, and J. S. Chang. 2008a. Improved photorophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour. Technol. 99: 3609-3616 https://doi.org/10.1016/j.biortech.2007.07.037
  3. Chen, C. Y., M. H. Yang, K. L. Yeh, C. H. Liu, and J.S. Chang. 2008b. Bio-hydrogen production using sequential two-stage dark and photo fermentation processes. Int. J. Hydrogen Energ. doi:1.1016/j.ijhydene. 2008.06.055 https://doi.org/10.1016/j.ijhydene.2008.06.055
  4. Chen, S .D., D. S. Sheu, W. M. Chen, Y. C. Lo, T. I. Huang, C. Y. Lin. 2007. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol Prog. 23: 1312-1320 https://doi.org/10.1021/bp070187z
  5. Chen, X., Y. Sun and Z. Xiu. 2006. Stoichiometric analysis of biological process for biohydrogen from glucose, Int. J. Hydrogen Energy 31: 539-549 https://doi.org/10.1016/j.ijhydene.2005.03.013
  6. Chin, H. L., Z. S. Chen, and C. P. Chou. 2003. Fedbatch operation using Clostridium acetobutyricum suspension cultures as biocatalyst for enhancing hydrogen production. Biotechnol. Prog. 19: 383-388 https://doi.org/10.1021/bp0200604
  7. Collet, C., N. Alder, J. P. Schwitzguebel, and P. Peringer. 2004. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrogen Energy. 29: 1479-1485 https://doi.org/10.1016/j.ijhydene.2004.02.009
  8. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26: 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  9. Evvyemie, D., K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrifucum M-21. J. Biosci. Bioeng. 91: 339-343 https://doi.org/10.1263/jbb.91.339
  10. Fabiano, B. and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes, Int. J. Hydrogen Energy 27: 149-156 https://doi.org/10.1016/S0360-3199(01)00102-1
  11. L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. Torres, Y. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood. 2003. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotech. 22: 55-61 https://doi.org/10.1038/nbt923
  12. Herbert, D., P. J. Philipps, and R. E. Strange. 1971. Carbohydrate analysis, Methods Enzymol 5B: 265-277
  13. Ishikawa, M., S, Yamamura, Y. Takamura, K. Sode, E. Tamiya, and M. Tomiyama. 2006. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system, Int. J. Hydrogen Energy 31: 1484-1489 https://doi.org/10.1016/j.ijhydene.2006.06.014
  14. Jo, J. H., D. S. Lee, D. Park, W. S. Choe, and J. M. Park. 2008. Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogens using statistical methods, Bioresour. Technol. 99: 2061-2066 https://doi.org/10.1016/j.biortech.2007.04.027
  15. Kim. K. H., Y. J. Choi, and E. Y. Kim. 2008. The optimization of biohydrogen production medium by dark fermentation with Enterobacter aerogenes, Kor. J. Biotechnol. Bioeng. 23: 54-58
  16. Korea Ministry of Environment, 2006, Comprehensive plan of the organic wastes of Korea
  17. Kumar, K. and D. Das. 2000. Enhancement of hydrogen production by Enerobacter cloacae IIT-BT 08. Process Biochem. 35: 589-593 https://doi.org/10.1016/S0032-9592(99)00109-0
  18. Kumar, K. and D. Das. 2001. Electron microscopy of hydrogen producing immobilized E. cloacae IIT-BT 08 on natural polymers, (2001), Int. J. of Hydrogen Energy 26: 1155-1163 https://doi.org/10.1016/S0360-3199(01)00061-1
  19. Levin, D. B., R. Islam, N. Cicek, and R. Sparling. 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Process Biochem. 31: 1496-1503 https://doi.org/10.1016/j.ijhydene.2006.06.015
  20. Liu, B.-F., N.-Q. Ren, De-F. Xing, J. Ding, G.-X. Zheng, W.-Q. Guo, J.-F. Xu, and G.-J. Xie. 2009. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Biores. Technol. 100: 2719-2723 https://doi.org/10.1016/j.biortech.2008.12.020
  21. Lo, Y. C., W. M. Chen, C. H. Hung, S. D. Chen, J. S. Chang. 2008. Dark H2 fermentation from sucrose and xylose using $H_{2}$-producing indigenous bacteria: feasibility and kinetic studies. Water Res. 42: 827-842 https://doi.org/10.1016/j.watres.2007.08.023
  22. Morimoto, M. and M. Atsuko. 2004. Biological production of hydrogen from glucose by natural anaerobic microflora, Int. J. Hydrogen Energy 29: 709-713 https://doi.org/10.1016/j.ijhydene.2003.09.009
  23. Momirlan, M. and T. Veziroglu. 1999. Recent directions of world hydrogen production, Renew. Sust. Energ. Rev. 3: 219-231 https://doi.org/10.1016/S1364-0321(98)00017-3
  24. Momirlan, M. and T. Veziroglu. 2002. Current status of hydrogen energy, Renew. Sust. Energ. Rev. 6: 141-179 https://doi.org/10.1016/S1364-0321(02)00004-7
  25. Ogino, H. T. Miura, K. Ishimi, M. Seki, and H. Yoshida. 2005. Hydrogen production from glucose by anaerobes. Biotechnol Prog. 21: 1786-1788 https://doi.org/10.1021/bp050224r
  26. Redwood, M. D. and L. E. Macaskie. 2006. A two-stage, two-organism process for biohydrogen from glucose, Int. J. Hydrogen Energy 31: 1514-1521 https://doi.org/10.1016/j.ijhydene.2006.06.018
  27. Tao, Y., Y. Chen, Y. Wu, Y. He, and Z. Zhou. 2007. High hydrogen yield from a two-step process of dark- and photofermentation of sucrose. Int. J. Hydrogen Energ. 32: 200-206 https://doi.org/10.1016/j.ijhydene.2006.06.034
  28. Thompson, J. D., D. G. Higgin. and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  29. Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Ferment.Bioeng. 80: 571-574 https://doi.org/10.1016/0922-338X(96)87733-6
  30. Yokoi, H. and R. Maki. 2002. Microbial production of hydrogen from starch-manufacturing wastes, Biomass and Bioenergy 22: 389-395 https://doi.org/10.1016/S0961-9534(02)00014-4
  31. Yun, Y.-S., S.-K. In, J.-S. Baek, S. H. Park, Y.-K. Oh, and M.-S. Kim. 2005. Two-stage biological hydrogen production by Rhodopseudomonas palustris P4. Trans. of the Kor. Hydro. and New Ener. Soc. 16: 315-323
  32. Zhang, H., M. A. Bruns, and B. E. Logan. 2006. Biological hydrogen production by Clostridium acetobutyricum in an unsaturated flow reactor. Water Res. 42: 827-842 https://doi.org/10.1016/j.watres.2007.08.023