Quantifiable Downregulation of Endogenous Genes in Agaricus bisporus Mediated by Expression of RNA Hairpins

Costa, Ana S. M. B. ${ }^{1}$, D. John I. Thomas ${ }^{1}$, Daniel Eastwood ${ }^{1}$, Simon B. Cutler ${ }^{1}$, Andy M. Bailey ${ }^{2}$, Gary D. Foster ${ }^{2}$, Peter R. Mills ${ }^{1}$, and Michael P. Challen ${ }^{1 *}$
${ }^{1}$ Warwick HRI, University of Warwick, Wellesbourne, Warwickshire, CV35 9EF, U.K.
${ }^{2}$ School of Biological Sciences, University of Bristol, Bristol, BS8 IUG, U.K.

Received: June 27, 2008 / Accepted: August 7, 2008

Abstract

Functional gene studies in the cultivated white button mushroom Agaricus bisporus have been constrained by the absence of effective gene-silencing tools. Using two endogenous genes from A. bisporus, we have tested the utility of dsRNA hairpin constructs to mediate downregulation of specific genes. Hairpin constructs for genes encoding orotidine 5^{\prime} monophosphate decarboxylase (URA3) and carboxin resistance (CBX) were introduced into A. bisporus using Agrobacteriummediated transfection. Although predicted changes in phenotype were not observed in vitro, quantitative-PCR analyses indicated unambiguously that transcripts in several transformants were substantially reduced compared with the non-transformed controls. Interestingly, some hairpin transformants exhibited increased transcription of target genes. Our observations show that hairpin transgenic sequences can mediate downregulation of A. bisporus endogenous genes and that the technology has the potential to expedite functional genomics of the mushroom.

Keywords: Agaricus bisporus, CBX, gene-silencing, dsRNA hairpin, RNAi, URA3

The white button mushroom Agaricus bisporus is a high value horticultural crop of worldwide economic significance, for which transformation technology has recently become available $[2,3,6,8,26]$. The most successful approach to transforming A. bisporus has been Agrobacterium tumefaciensmediated transformation (Agrotransfection) of excised gill tissue [8]. As gene disruption (knock-out) methods are difficult to apply to this multinucleate heterokaryotic species, functional genomic studies have been hitherto constrained [1, 17, 35]. RNA silencing is locus independent and mediated by a mobile trans-acting signal in the cytoplasm, and is a technology

[^0]proving to have broad utility. Using the exogenous GFP reporter gene, we have previously shown that both antisense and hairpin constructs can trigger gene silencing in the model homobasidiomycete species, Coprinopsis cinerea (=Coprinus cinereus; [20]). Building on our recent advances in the transformation of A. bisporus [2, 3, 24], we have tested the utility of hairpin constructs to downregulate endogenous A. bisporus genes.

Two genes were selected to model the efficacy of hairpin transformations. The A. bisporus URA3 gene [6], which encodes orotidine 5 '-monophosphate decarboxylase (OMPdecase, E.C. 4.1.1.23) and catalyzes the conversion of orotidylic acid to uridylic acid, during uracil biosynthesis. The A. bisporus CBX mutant gene encodes resistance to the fungicide carboxin and results from a mutation in the iron-sulfur protein subunit of succinate dehydrogenase (SDH, E.C. 1.3.99.1) [5, 6]. In this manuscript, we report the development of hairpin-mediated gene suppression for A. bisporus and quantifiable downregulation of URA3 and $C B X$ transcripts.

Material and Methods

Strains, Culture Maintenance, and Transformation

The Escherichia coli strain DH5 α was used as the host strain for construction and maintenance of recombinant plasmids. A tissue culture derivative of the commercial A15 strain of A. bisporus (Sylvan Inc., U.S.A.) was used for URA3 silencing experiments. Two carboxinresistant strains, C54-carb. 8 and C43-carb. 9 [5], were used for $C B X$ silencing experiments. Mushroom sporophores were produced in the Warwick transgenic mushroom containment facility, using compost culture and standard industry methods [14]. Mycelial cultures were grown at $25^{\circ} \mathrm{C}$ using malt peptone agar (MPA; [24]) or mushroom minimal medium (MMM; [31]) supplemented with hygromycin $(25 \mathrm{mg} / \mathrm{ml})$ and uracil $(100 \mathrm{mg} / \mathrm{l})$ as required. Agrobacterium tumefaciens strain AGL-1 [22] was used for Agrotransfection of A. bisporus, using gill-tissue infiltration [8] and other well-established methodologies [6, 11, 24].

Table 1. Oligonucleotides used in this study: sequence and purpose.

Primer	Sequence ($5^{\prime}-3{ }^{\prime}$)	Description
URA3_497extF	GACAAGATCTACTAGTGTAAGCGTGGATGTTACCC	Introduction of restriction sites (bold) to permit directional cloning
URA3_497extR	AGAGGCGCGCCATTTAAATCGGCATCATCTGTGTAC	
URA3_381extF	GACAAGATCTACTAGTCGTGGACTCCTATTACTAGC	
URA3_381extR	AGAGGCGCGCCATTTAAATATACGCATCCCATCCTTC	
CBX_413extF	GACAAGATCTACTAGTCCAGCCTTGGCTACAGAAC	
CBX_413extR	AGAGGCGCGCCATTTAAATAAGACCCTTCGGGCAAGTACG	
CBX_368extF	GACAAGATCTACTAGTGAAACCCACTCTGCAGTCTTAC	
CBX_368extR	AGAGGCGCGCCATTTAAATCGAGGTCCTTCACAACATACAC	
HYG_F	ATGCCTGAACTCACCGCG	PCR screen: $h p h$ transgene
HYG_R	TCGGTTTCCACTATCGGC	
GDP-Loop_F	TGCCAACGAACCGGATACCC	
GDP-Loop_R	GCGGTCGGCATCAGATC6TAC	PCR screen: sense and antisense hairpin sequences
Loop-TrpC_F	CCGGTTCGTTGGCAATACTC	
Loop-TrpC_R	TTCCGGTCACATCCACCATC	
SDH_F	TCACGTAAGAGACGCGAACA	RT-PCR screen: confirm absence of gDNA
SDH_R	AACGCAACTCGTGGTACTCA	
q497URA3_F	GCCAGAATGGTTGCGATGTT	Q-PCR: 497 bp URA3 hairpin transcripts
q497URA3_R	TCGGATTGCTTCAACGTCTTT	
q381URA3_F	GAGGATTTTGATTCCAACCTGATAAA	Q-PCR: 381 bp URA3 hairpin transcripts
q381URA3_R	TCGGCAAATTTTCTATCTTCGAA	
qCBX_F	CGGCGGCACCCAGAT	Q-PCR: 413 bp \& 368 bp SDH transcripts
qCBX_R	ATCAGTACCAGTTCCACATCCTAGGT	
q18S_F	TCGCCGCTCCCTTGGT	Q-PCR: A. bisporus 18S rRNA transcripts
q18S_R	GCATCGCCGGCACAA	

Binary vectors were developed using the pGreen002 vector [19] and introduced into A. tumefaciens by electroporation. The A. bisporus URA3 gene was recovered from the C54-carb. 8 cosmid genomic library [4] by screening for conserved OMPdecase motifs. Specifically, internal fragments were amplified using PCR from the Schizophyllum commune URA1 [15] and Phycomyces blakesleeanus

Fig. 1. Schematic representation of hairpin constructs to target URA3 (A. AbURA3 497; B. AbURA3_381) and CBX (C. AbCBX413; D. AbCBX368) A. bisporus genes.
Regulatory sequences are common in all constructs: A. bisporus gpdII promoter (277 bp) and A. nidulans trp C terminator (711 bp). Inverted repeats are separated by 330 -bp nonfunctional sequences from the E. coli gusA gene (loop).
pyrG [13] genes and used as hybridization probes to reveal two overlapping cosmid clones (AbLAW5F4, AbLAW32B1). Sequencing of $3,288 \mathrm{bp}$ within these cosmids revealed a $932 \mathrm{bp}(1,185-2,116 \mathrm{nt})$ A. bisporus URA3 ORF region, interrupted by two introns (1,371$1,419 \mathrm{nt}, 1,531-1,582 \mathrm{nt}$) that encoded a predicted protein of 267 amino acids; database Accession No. FM202068.

Hairpin constructs were based on the pRNAiDE001 vector [14,20] where self-complementary sense and antisense sequences are separated by a 330 -bp nonfunctional sequence (loop) isolated from the E. coli gusA gene. Expression of hairpin sequences was regulated by the A. bisporus gpdII promoter [18] and A. nidulans trpC terminator [30]. Target hairpin sequences were amplified by PCR using primers that introduce appropriate restriction sites to permit sequential cloning in sense (Swal-SpeI) and antisense (AscIBglII) orientations. Specific primers used to clone URA3 and $C B X$ fragments are described in Table 1. Two URA3 (AbURA3_497, AbURA3_381) and two CBX (AbCBX_413, AbCBX_368) hairpin constructs were produced with differing hairpin sequences (Fig. 1). Silencing cassettes were introduced into the pGreen_hph1 [14], which contain the hygromycin resistance gene and fungal regulatory sequences from pAN7-1 [30]. The hairpin expression cassette was cloned in two orientations with respect to the hygromycin marker, as unidirectional or divergently transcribed sequences.

PCR and Quantitative RT-PCR Analysis (Q-PCR)
Fungal DNAs were prepared using a Chelex ${ }^{\mathbb{R}} 100$ Resin (Bio-Rad Laboratories, CA, U.S.A.) miniprep method [7]. Presence of hairpin
transgene sequences in genomic DNA was detected using PCR and primers annealing with either the promoter or terminator and noncoding gusA loop sequences (Table 1). Total RNA was extracted from freeze-dried mycelium using TRI Reagent ${ }^{\circledR}$ (Sigma Genosys, Sulfolk, U.K.) according to the manufacturers, instructions. Total RNA ($1 \mu \mathrm{~g}$) was treated with DNase (Promega Corporation, Madison, WI, U.S.A.) and the cDNA synthesized using random hexamers and SuperScript ${ }^{\left({ }^{(}\right)}$ II reverse transcriptase (Invitrogen, Paisley, U.K.). Three independent RNA extractions were performed for each strain/transformant tested. Absence of genomic DNA in cDNA preparations was confirmed using primers that span an intron of the A. bisporus $S D H$ gene (Table 1). Transcription of the target genes was quantified using SYBR green Q-PCR as previously described [20], and the primers are identified in Table 1. RNA samples were normalized against the A. bisporus 18 S rRNA.

Phenotypic Analysis

The ura3 phenotype was tested by growing transformants on MMM with or without uracil. Sensitivity to carboxin was evaluated by growth on MMM agar with or without carboxin $(15 \mu \mathrm{~g} / \mathrm{ml})$. Controls were non-transformed A15, carboxin-resistant mutants C43-carb. 9 and C54-carb.8, or the C63-ura (ura3) mutant [6]. Phenotype experiments were performed twice.

Results and Discussion

RNAi-mediated gene suppression is becoming increasingly pervasive as a tool for functional genomics, and has recently proved applicable to homobasidiomycete fungi [10,12 , $20,28,34]$. In this study, we have modeled hairpin-mediated gene suppression in the premier cultivated mushroom A. bisporus using two endogenous genes (URA3 and CBX). Two different target regions and stem-lengths were exploited for each gene ($497,381 \mathrm{bp}$ for URA3; $413,368 \mathrm{bp}$ for $C B X$). Hairpin expression units were cloned in two transcriptional directions (unidirectional and divergent) with respect to the hygromycin expression cassette and introduced into A. bisporus gill tissue using Agrotransfection.
Transformants were recovered using each of the different binary vectors. Transformation efficiency was assessed as the ratio of the number of transformants and the number of gill tissue plated [24]. The recovery of transformants differed substantially between host mushroom strains, e.g., using the carboxin-resistant mutants C54-carb. 8 and C43-carb.9, transformation efficiencies were ranged between 3% and 23%, respectively. Variation in the recovery of transformants from different host strains of A. bisporus has been previously observed [23, 32]. However, to ensure that these observations were not partly due to transforming with hairpin vectors, all host strains (A15, C54-carb.8, and C43-carb.9) were transformed with the control binary pGreen_hph1. Again, the efficiency of transformation was much lower using C54-carb. 8 (3\%) than either C43-carb. 9 (52%) or strain A15 (37\%), indicating that C54-carb. 8 has a low affinity for Agrotransfection.

PCR screening of 25 URA3 and 21 CBX hygromycin, resistant mycelial colonies established a pool of 17 URA3 and 11 CBX transformants, in which the presence of the hygromycin resistance transgene was confirmed. Of the 17 URA3 transformants, 14 yielded both sense and antisense hairpin PCR amplicons. Nine of these were recovered using the AbURA3_497 (T1, T2, T3, T5, T7, T18, T19, T 27 , and T 35) and the remaining five ($\mathrm{T} 8, \mathrm{~T} 26, \mathrm{~T} 31, \mathrm{~T} 32$, and T45) using the ABURA3_ 381 construct.

All of the 11 CBX transformants (T13, T22, T41, T57, T58, T59, T74, T80, T82, T85, and T88) yielded the appropriate sense and antisense hairpin amplicons in PCR screens. Five $C B X$ transformants were obtained with the AbCBX_413 construct (T22, T41, T57, T85 and T88) and six (T13, T58, T59, T74, T80 and T82) using AbCBX_368.
To determine whether transcription of the endogenous genes was affected, Q-PCR was performed using primers exclusively designed outside the hairpin regions. Transcripts were initially quantified in 14 URA3 hairpin transformants, and these exhibited diverse levels of URA3 transcription

Fig 2. Quantitative RT-PCR analysis of A. bisporus hairpin transformants.
A. Four URA3 hairpin transformants (T5, T7, T18, T45) exhibited a range of URA3 downregulation compared with the nontransformed host (A15) and control transformant (T10); B. Four $C B X$ transformants show a significant decrease of $S D H$ mRNA compared with the nontransformed host C43-carb.9. Transcripts were normalized against 18S rRNA. Standard error bars are from 2-4 biological replicates.
when compared with nontransformed A15 and the transformed control T10. Eight URA3 hairpin transformants did not differ from the controls. In two transformants, URA3 transcripts were significantly increased, and four transformants exhibited reduced transcripts. The efficiency of downregulation was relatively low with the two URA3 constructs tested; 22% of AbURA3_497 transformants were downregulated, as were 40% of the AbURA3_381 transformants. In a highly replicated Q-PCR analysis of five URA3 hairpin transformants, one transformant (T1) exhibited significant upregulation of URA3 transcripts, and in three transformants (T5, T7, and T45), transcription was significantly reduced (Fig. 2A). Two URA3 transformants did not differ significantly to the controls.

Both of the $C B X$ constructs tested were equally effective at initiating downregulation. Using AbCBX413, SDH transcripts were downregulated in 60% of the transformants, and with AbCBX368 50\% of transformants had transcripts that were significantly lower than the controls. The relative expression of SDH transcripts for C43-carb. 9 transformants is shown in Fig. 2B; five transformants (T22, T41, T57, T59, and T80) were downregulated compared with the nontransformed host.

The phenotype of the hairpin transformants was evaluated on appropriate agar media. If $U R A 3$ was fully silenced, the hairpin transformants would be expected to behave as OMPdecase auxotrophs and unable to grow on minimal medium. However, despite some minor changes in colony morphologies, all URA3 hairpin transformants tested were able to grow uninhibited on MMM. To ensure that uracil was not limiting recovery of transformants with the mutant phenotype, experiments were also performed where uracil was incorporated into selective media at a rate that permits growth of the C63-ura mutant on MMM. Transformants recovered with and without uracil supplementation behaved identically. Experiments to silence the mutant $C B X$ gene were more of a "long shot" and were initially designed to evaluate the specificity of hairpin transformations. If our hairpins specifically silenced the mutant $C B X$ gene conferring carboxin resistance, then transformants of our C54-carb.8 and C43-carb. 9 host strains might exhibit a carboxinsensitive phenotype. Alternatively, if silencing was nonspecific, then both mutant $C B X$ and wild-type $S D H$ alleles would be silenced and hairpin transformations could prove lethal. Although we were unable to differentiate between the two alleles using Q-PCR, there was no evidence for either event in our $C B X$ hairpin experiments. All transformants recovered proved capable of growth on carboxin amended agar medium, despite substantial reductions in SDH transcription, and there was no obvious reduction in the recovery of transformants that might be associated with a lethal event. As with the URA3 hairpin transformants, it seems likely that low-level transcription of the target $C B X$ gene was sufficient to permit maintenance of the resistance phenotype.

The A. bisporus URA3 and $S D H$ genes were successfully downregulated using Agrotransfection and several different
hairpin sequences of the target gene. The arrangement of the hairpin sequences within the T-DNA, with respect to the hygromycin resistance selectable marker, did not affect transformation rates. The relative proportions of transformants exhibiting downregulation varied between experiments, but further work would be required to determine whether the hairpin stem length, the target region, or if the specific gene used was having significant effects in A. bisporus. In plants, the incorporation of intron sequences into hairpin vectors can lead to improved efficacy [33], and the inclusion of intron sequences has also proved effective in some fungi [29]. We have not observed concomitant increases in efficacy when using a vector that replaces the gusA loop sequence of pRNAiDE001 with an intron from A. bisporus (Sergeant et al., unpublished data). Although some hairpin transformants exhibited reduced transcripts, concomitant changes in phenotype were not observed. Similar results were obtained when targeting the C. cinerea URA3 gene with hairpin sequences; although URA3 transcripts were downregulated, transformants could grow on minimal medium [9]. The use of antisense constructs to attempt suppression of another uracil biosysnthesis gene, PYR3 (dihydroorotase), in the heterobasidiomycete Ustilago maydis also failed to yield mutant phenotypes [21]. Likewise in Neurospora crassa, hairpin transformants targeting the PAN2 gene (pantothenic acid biosynthetic pathway) also exhibited reduced transcripts but did not induce the defective phenotype [16]. Collectively, these experiments demonstrate that although substantial downregulation of mRNAs can be achieved through hairpin transformations, very low-level transcription of key biosynthetic genes may be sufficient to permit growth of the organism on selective media.

The substantial upregulation of $U R A 3$ and $C B X$ transcripts in some transformants is an interesting observation. We routinely observe upregulation as a result of hairpin transformation [9, 14]. Although the reason for this phenomenon is not clear, reports of increased target gene transcripts in RNAi transformations has been reported in other systems [25]; elevated expression may prove equally useful for functional gene characterization.

The approaches described here can be used to modify expression of specific genes in the mushroom A. bisporus and are likely to have utility in other edible mushrooms. We are now using Agrotransfection with hairpin sequences to alter the expression of genes involved in mushroom postharvest development [14] and those expressed in response to pathogen attack [27].

Acknowledgments

Mushroom Science studies at the University of Warwick and Bristol were funded through grants from DEFRA and

BBSRC. We thank Dr Martin Sergeant, Warwick HRI for advice on Q-PCR analysis.

References

1. Bundock, P., K. Mróczek, A. Winkler, H. Steensma, and P. Hooykaas. 1999. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261: 115-121.
2. Burns, C., K. E. Gregory, M. Kirby, M. K. Cheung, M. Riequelme, T. J. Elliott, M. P. Challen, A. M. Bailey, and G. D. Foster. 2005. Efficient GFP expression in the mushroom Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet. Biol. 42: 191-199.
3. Burns, C., K. M. Leach, T. J. Elliott, M. P. Challen, G. D. Foster, and A. Bailey. 2006. Evaluation of Agrobacteriummediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Mol. Biotechnol. 32: 129-138.
4. Challen, M. P., H. S. Sodhi, G. R. Bhattiprolu, and T. J. Elliott. 1996. Molecular cloning and characterization of the Agaricus bisporus TRP2 gene, pp. 47-56. In: Royse, D. J. (ed.), Mushroom Biology and Mushroom Products. Penn State, U.S.A.
5. Challen, M. and T. Elliott. 1987. Production and evaluation of fungicide resistant mutants in the cultivated mushroom Agaricus bisporus. Trans. Br. Mycol. Soc. 88: 433-439.
6. Challen, M. P., K. E. Gregory, S. Sreenivasaprasad, C. C. Rogers, S. B. Cutler, D. C. Diaper, T. J. Elliott, and G. D. Foster. 2000. Transformation technologies for mushrooms. Mushroom Sci. 15: 165-172.
7. Challen, M. P., R. W. Kerrigan, and P. Callac. 2003. A phylogenetic reconstruction and emendation of Agaricus section Duploanmulatae. Mycologia 95: 61-73.
8. Chen, X., M. Stone, C. Schlagnhaufer, and C. P. Romaine. 2000. A fruiting body tissue method for efficient Agrobacteriummediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513.
9. Costa, A. M. S. B. 2007. Gene silencing strategies for functional genomics in homobasidiomycetes. PhD Thesis, University of Bristol, U.K.
10. Costa, A. M. S. B., P. R. Mills, A. Bailey, G. D. Foster, and M. P. Challen. 2008. Oligonucleotide sequences forming selfcomplementary hairpins can expedite the down-regulation of Coprinopsis cinerea genes. J. Microbiol. Methods, doi:10.1016/ j.mimet.2008.06.006
11. De Groot, M., P. Bundock, P. Hooykaas, and A. Beijersbergen. 1998. Agrobacterium-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842.
12. De Jong, J., H. Deelstra, H. Wosten, and L. Lugones. 2006. RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune. Appl. Environ. Microbiol. 72: 12671269.
13. Diaz Minguez, J. M., E. A. Iturriaga, E. P. Benito, L. M. Corrochano, and A. P. Elsava. 1990. Isolation and molecular analysis of the orotidine 5 ' monophosphate decarboxylase gene (pyrG) of Phycomyces blakesleeanus. Mol. Gen. Genet. 224: 269-278.
14. Eastwood, D. C., M. P. Challen, C. Zhang, H. Jenkins, J. Henderson, and K. S. Burton. 2008. Hairpin-mediated downregulation of the urea cycle enzyme argininosuccinate lyase in Agaricus bisporus. Mycol. Res. 112: 708-716.
15. Froeliger, E. H., R. C. Ullrich, and C. P. Novotny. 1989. Sequence analysis of the URA1 gene encoding orotidine-5'monophosphate decarboxylase of Schizophyllum commune. Gene 83: 387-393.
16. Goldoni, M., G. Azzalin, G. Macino, and C. Cogoni. 2004. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet. Biol. 41: 1016-1024.
17. Gouka, R. J., C. Gerk, P. J. J. Hooykaas, P. Bundock, W. Musters, C. T. Verrips, and M. J. A. de Groot. 1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 17: 598-601.
18. Harmsen, M. C., F. H. J. Schuren, S. M. Moukha, C. M. van Zuilen, P. J. Punt, and J. G. H. Wessels. 1992. Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr. Genet. 22: 447454.
19. Hellens, R., P. Mullineaux, and H. Klee. 2000. A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 54: 446451.
20. Heneghan, M. N., A. M. S. Costa, M. P. Challen, P. R. Mills, A. Bailey, and G. D. Foster. 2007. A comparison of methods for successful triggering of gene silencing in Coprinopsis cinerea. Mol. Biotechnol. 35: 283-296.
21. Keon, J. P., J. W. Owen, and J. A. Hargreaves. 1999. Lack of evidence for antisense suppression in the fungal plant pathogen Ustilago maydis. Nucleic Acid Drug Dev. 9: 101-104.
22. Lazo, G. R., P. A. Stein, and R. A. Ludwig. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat. Biotechnol. 9: 963-967.
23. Leach, K. A. 2004. Homobasidiomycete transformation: Agrobacterium methodologies and marker gene development in Agaricus and Coprinus. PhD Thesis, Coventry University, U.K.
24. Leach, K., V. Odon, C. Zhang, H. K. Kim, J. Hederson, P. Warner, M. Challen, and T. Elliott. 2004. Progress in Agaricus bisporus transformation: Agrobacterium methodologies and development of novel marker genes. Mushroom Sci. 16: 93102.
25. Li, L. C., S. T. Okino, H. Zhao, D. Pookot, R. F. Place, S. Urakami, H. Enokida, and R. Dahiya. 2006. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl. Acad. Sci. U.S.A. 103: 17337-17342.
26. Mikosch, T. S. P., B. Lavrijssen, A. S. M. Sonnenberg, and L. van Griensven. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 39: 35-39.
27. Mills, P., J. Thomas, M. Sergeant, A. Costa, P. D. Collopy, A. Bailey, G. Foster, and M. Challen. 2008. Interactions between Agaricus bisporus and the pathogen Verticillium fungicola, pp. 1-17. In: S. V. Avery, M. Stratford, and P. Van West (eds.), Stress in Yeasts and Filamentous Fungi. The British Mycological Society, Academic Press, Elsevier Ltd, U.K.
28. Namekawa, S., K. Iwabata, H. Sugawara, F. Hamada, A. Koshiyama, H. Chiku, T. Kamada, and K. Sakaguchi. 2005. Knock-
down of LIM15/DMC1 in the mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing. Microbiology 151: 3669-3678.
29. Nakayashiki, H., S. Hanada, N. Quoc, N. Katodani, Y. Tosa, and S. Mayama. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet. Biol. 42: 275-283.
30. Punt, P. J., R. P. Oliver, M. A. Dingemanse, P. H. Pouwels, and C. A. M. J. J. van den Hondel. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117-124.
31. Raper, C. A., J. R. Raper, and R. E. Miller. 1972. Genetic analysis of the life cycle of Agaricus bisporus. Mycologica 64: 1088-1117.
32. Romaine, C. P. 2005. Transgenic breeding of Agaricus bisporus: The next frontier. Acta Edulis Fungi (Suppl.) 12: 174-184.
33. Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoutjesdijk, A. G. Green, and P. M. Waterhouse. 2000. Gene expression: Total silencing by intron-spliced hairpin RNAs. Nature 407: 319320.
34. Wälti, M., C. Villalba, R. Buser, A. Grunler, M. Aebi, and M. Kunzler. 2006. Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot. Cell 5: 732-744.
35. Zwiers, L. H. and M. A. De Waard. 2001. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr. Genet. 39: 388-393.

[^0]: *Corresponding author
 Phone: +44 (0) 247657 5078; Fax: +44 (0) 2476574500 ;
 E-mail: mike.challen@warwick.ac.uk

