DOI QR코드

DOI QR Code

Functional Analysis of MCNA, a Gene Encoding a Catalytic Subunit of Calcineurin, in the Rice Blast Fungus Magnaporthe oryzae

  • Choi, Jin-Hee (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Center for Fungal Genetic Resources, Seoul National University) ;
  • Kim, Yang-Seon (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Center for Fungal Genetic Resources, Seoul National University) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Center for Fungal Genetic Resources, Seoul National University)
  • Received : 2008.04.10
  • Accepted : 2008.07.01
  • Published : 2009.01.31

Abstract

Magnaporthe oryzae, the causal agent of rice blast, forms a specialized infection structure, called an appressorium, which is crucial for penetration and infection of the host plant. Pharmacological data suggest that calcium/calmodulindependent signaling is involved in appressorium formation in this fungus. To understand the role of the calcium/calmodulin-activated protein phosphatase on appressorium formation at the molecular level, MCNA, a gene encoding the catalytic subunit of calcineurin, was functionally characterized in M. oryzae. Transformants expressing sense/antisense RNA of MCNA exhibited significant reductions in mycelial growth, conidiation, appressorium formation, and pathogenicity. cDNA of MCNA functionally complemented a calcineurin disruptant strain (cmp1::LEU2 cmp2::HIS3) of Saccharomyces cerevisiae. These data suggest that calcineurin A plays important roles in signal transduction pathways involved in the infection-related morphogenesis and pathogenicity of M. oryzae.

Keywords

References

  1. Adachi, K. and J. E. Hamer. 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10: 1361-1374 https://doi.org/10.1105/tpc.10.8.1361
  2. Bader, T., B. Bodendorfer, K. Schroppel, and J. Morschhauser. 2003. Calcineurin is essential for virulence in Candida albicans. Infect. Immun. 71: 5344-5354 https://doi.org/10.1128/IAI.71.9.5344-5354.2003
  3. Bae, C. Y., S. Kim, W. B. Choi, and Y. H. Lee. 2007. Involvement of extracellular matrix and integrin-like proteins on conidial adhesion and appressorium differentiation in Magnaporthe oryzae. J. Microbiol. Biotechnol. 17: 1198-1203
  4. Bencina, M., M. Legisa, and N. D. Read. 2005. Cross-talk between cAMP and calcium signalling in Aspergillus niger. Mol. Microbiol. 56: 268-281 https://doi.org/10.1111/j.1365-2958.2005.04541.x
  5. Bok, J. W., T. Sone, L. B. Silverman-Gavrila, R. R. Lew, F. J. Bowring, D. E. Catcheside, and A. J. Griffiths. 2001. Structure and function analysis of the calcium-related gene spray in Neurospora crassa. Fungal Genet. Biol. 32: 145-158 https://doi.org/10.1006/fgbi.2000.1259
  6. Choi, G. H., B. Chen, and D. L. Nuss. 1995. Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc. Natl. Acad. Sci. USA 92: 305-309 https://doi.org/10.1073/pnas.92.1.305
  7. Davis, K. R. and F. M. Ausubel. 1989. Characterization of elicitor-induced defense responses in suspension-cultured cells of Arabidopsis. Mol. Plant Microbe Interact. 2: 363-368 https://doi.org/10.1094/MPMI-2-363
  8. Dickman, M. B. and O. Yarden. 1999. Serine/threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet. Biol. 26: 99-117 https://doi.org/10.1006/fgbi.1999.1118
  9. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811 https://doi.org/10.1038/35888
  10. Gilbert, R. D., A. M. Johnson, and R. A. Dean. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol. Molec. Plant Pathol. 48: 335-346 https://doi.org/10.1006/pmpp.1996.0027
  11. Hamer, J. E. and N. J. Talbot. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1: 693-697 https://doi.org/10.1016/S1369-5274(98)80117-3
  12. Harel, A., S. Bercovich, and O. Yarden. 2006. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Mol. Plant Microbe Interact. 19: 682-693 https://doi.org/10.1094/MPMI-19-0682
  13. Juvvadi, P. R., M. Arioka, H. Nakajima, and K. Kitamoto. 2001. Cloning and sequence analysis of cnaA gene encoding the catalytic subunit of calcineurin from Aspergillus oryzae. FEMS Microbiol. Lett. 204: 169-174 https://doi.org/10.1111/j.1574-6968.2001.tb10881.x
  14. Juvvadi, P. R., Y. Kuroki, M. Arioka, H. Nakajima, and K. Kitamoto. 2003. Functional analysis of the calcineurin-encoding gene cnaA from Aspergillus oryzae: Evidence for its putative role in stress adaptation. Arch. Microbiol. 179: 416-422 https://doi.org/10.1007/s00203-003-0546-3
  15. Kadotani, N., H. Nakayashiki, Y. Tosa, and S. Mayama. 2003. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol. Plant Microbe Interact. 16: 769-776 https://doi.org/10.1094/MPMI.2003.16.9.769
  16. Kafadar, K. A. and M. S. Cyert. 2004. Integration of stress responses: Modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot. Cell 3: 1147-1153 https://doi.org/10.1128/EC.3.5.1147-1153.2004
  17. Kim, S., I. P. Ahn, H. S. Rho, and Y. H. Lee. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 57: 1224-1237 https://doi.org/10.1111/j.1365-2958.2005.04750.x
  18. Lee, S. C. and Y. H. Lee. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8: 698-704
  19. Lee, Y.-H. and R. A. Dean. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5: 693-700 https://doi.org/10.1105/tpc.5.6.693
  20. Lee, Y.-H. and R. A. Dean. 1994. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett. 115: 71-75 https://doi.org/10.1111/j.1574-6968.1994.tb06616.x
  21. Leung, H., U. Lehtinen, R. Karjalainen, D. Skinner, P. Tooley, S. Leong, and A. Ellingboe. 1990. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr. Genet. 17: 409-411 https://doi.org/10.1007/BF00334519
  22. Liu, S. and R. A. Dean. 1997. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant Microbe Interact. 10: 1075-1086 https://doi.org/10.1094/MPMI.1997.10.9.1075
  23. Liu, Z. M. and P. E. Kolattukudy. 1999. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J. Bacteriol. 181: 3571-3577
  24. Mendoza, I., F. J. Quintero, R. A. Bressan, P. M. Hasegawa, and J. M. Pardo. 1996. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem. 271: 23061-23067 https://doi.org/10.1074/jbc.271.38.23061
  25. Mendoza, I., F. Rubio, A. Rodriguez-Navarro, and J. M. Pardo. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792-8796
  26. Moore, T. M., P. M. Chetham, J. J. Kelly, and T. Stevens. 1998. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am. J. Physiol. 275: L203-L222 https://doi.org/10.1152/ajplung.1998.275.2.L203
  27. Nakamura, T., Y. Liu, D. Hirata, H. Namba, S. Harada, T. Hirokawa, and T. Miyakawa. 1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12: 4063-4071
  28. Odom, A., S. Muir, E. Lim, D. L. Toffaletti, J. Perfect, and J. Heitman. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16: 2576-2589 https://doi.org/10.1093/emboj/16.10.2576
  29. Ou, S. H. 1985. Rice Diseases. Commonwealth Mycological Institute, Kew, U.K
  30. Pallen, C. J. and J. H. Wang. 1983. Calmodulin-stimulated dephosphorylation of para-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J. Biol. Chem. 258: 8550-8553
  31. Prokisch, H., O. Yarden, M. Dieminger, M. Tropschug, and I. B. Barthelmess. 1997. Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical $Ca^{2+}$gradient. Mol. Gen. Genet. 256: 104-114 https://doi.org/10.1007/s004380050551
  32. Rasmussen, C., C. Garen, S. Brining, R. L. Kincaid, R. L. Means, and A. R. Means. 1994. The calmodulin-dependent protein phosphatase catalytic subunit (calcineurin A) is an essential gene in Aspergillus nidulans. EMBO J. 13: 3917-3924
  33. Rusnak, F. and P. Mertz. 2000. Calcineurin: Form and function. Physiol. Rev. 80: 1483-1521 https://doi.org/10.1152/physrev.2000.80.4.1483
  34. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY, Cold Spring Harbor, NY
  35. Steinbach, W. J., R. A. Cramer, Jr., B. Z. Perfect, Y. G. Asfaw, T. C. Sauer, L. K. Najvar, et al. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5: 1091-1103 https://doi.org/10.1128/EC.00139-06
  36. Talbot, N. J., D. J. Ebbole, and J. E. Hamer. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590 https://doi.org/10.1105/tpc.5.11.1575
  37. Viaud, M., A. Brunet-Simon, Y. Brygoo, J. M. Pradier, and C. Levis. 2003. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol. Microbiol. 50: 1451-1465 https://doi.org/10.1046/j.1365-2958.2003.03798.x
  38. Viaud, M. C., P. V. Balhadere, and N. J. Talbot. 2002. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14: 917-930 https://doi.org/10.1105/tpc.010389
  39. Wesley, S. V., C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, et al. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27:581-590 https://doi.org/10.1046/j.1365-313X.2001.01105.x
  40. Xu, J. R. and J. E. Hamer. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev.10: 2696-2706 https://doi.org/10.1101/gad.10.21.2696
  41. Yi, M. and Y. H. Lee. 2008. Identification of genes encoding heat shock protein 40 family and the functional characterization of two Hsp40s, MHF16, and MHF21, in Magnaporthe oryzae. Plant Pathol. J. 24: 131-142 https://doi.org/10.5423/PPJ.2008.24.2.131

Cited by

  1. Homeobox Transcription Factors Are Required for Conidiation and Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae vol.5, pp.12, 2009, https://doi.org/10.1371/journal.pgen.1000757
  2. On the Roles of Calcineurin in Fungal Growth and Pathogenesis vol.4, pp.4, 2009, https://doi.org/10.1007/s12281-010-0027-5
  3. Combining ChIP-chip and Expression Profiling to Model the MoCRZ1 Mediated Circuit for Ca 2+ /Calcineurin Signaling in the Rice Blast Fungus vol.6, pp.5, 2009, https://doi.org/10.1371/journal.ppat.1000909
  4. A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae vol.26, pp.1, 2009, https://doi.org/10.5423/ppj.2010.26.1.008
  5. Response to Environmental Stresses, Cell-wall Integrity, and Virulence Are Orchestrated Through the Calcineurin Pathway in Ustilago hordei vol.24, pp.2, 2011, https://doi.org/10.1094/mpmi-09-10-0202
  6. Convergent Evolution of Calcineurin Pathway Roles in Thermotolerance and Virulence in Candida glabrata vol.2, pp.6, 2009, https://doi.org/10.1534/g3.112.002279
  7. Calcineurin Is Required for Pseudohyphal Growth, Virulence, and Drug Resistance in Candida lusitaniae vol.7, pp.8, 2009, https://doi.org/10.1371/journal.pone.0044192
  8. Functional Characterization of Calcineurin Homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici Using a Host-Induced RNAi System vol.7, pp.11, 2009, https://doi.org/10.1371/journal.pone.0049262
  9. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum vol.15, pp.11, 2009, https://doi.org/10.1111/1462-2920.12166
  10. Phosphorylation of Calcineurin at a Novel Serine-Proline Rich Region Orchestrates Hyphal Growth and Virulence in Aspergillus fumigatus vol.9, pp.8, 2013, https://doi.org/10.1371/journal.ppat.1003564
  11. Calcineurin Governs Thermotolerance and Virulence of Cryptococcus gattii vol.3, pp.3, 2009, https://doi.org/10.1534/g3.112.004242
  12. A serine/threonine-protein phosphatase PP2A catalytic subunit is essential for asexual development and plant infection in Magnaporthe oryzae vol.59, pp.1, 2009, https://doi.org/10.1007/s00294-012-0385-3
  13. Genome-wide analyses of DNA-binding proteins harboring AT-hook motifs and their functional roles in the rice blast pathogen, Magnaporthe oryzae vol.36, pp.6, 2014, https://doi.org/10.1007/s13258-014-0233-6
  14. Pleiotropic Function of the Putative Zinc-Finger Protein MoMsn2 in Magnaporthe oryzae vol.27, pp.5, 2009, https://doi.org/10.1094/mpmi-09-13-0271-r
  15. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae vol.17, pp.4, 2009, https://doi.org/10.1111/1462-2920.12633
  16. Calcineurin Orchestrates Hyphal Growth, Septation, Drug Resistance and Pathogenesis of Aspergillus fumigatus : Where Do We Go from Here? vol.4, pp.4, 2015, https://doi.org/10.3390/pathogens4040883
  17. Calcineurin Subunits A and B Interact to Regulate Growth and Asexual and Sexual Development in Neurospora crassa vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0151867
  18. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach vol.8, pp.2, 2009, https://doi.org/10.1080/21505594.2016.1201250
  19. The putative flavin carrier family FlcA-C is important forAspergillus fumigatusvirulence vol.8, pp.6, 2009, https://doi.org/10.1080/21505594.2016.1239010
  20. Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae vol.9, pp.3, 2009, https://doi.org/10.1080/21501203.2018.1492981
  21. Identification of Differentially Expressed Genes by cDNA-AFLP in Magnaporthe oryzae vol.25, pp.4, 2009, https://doi.org/10.5423/rpd.2019.25.4.205
  22. 5-Hydroxymethylfurfural and Alpha-Ketoglutaric Acid as an Ergogenic Aid During Intensified Soccer Training: A Placebo Controlled Randomized Study vol.17, pp.2, 2009, https://doi.org/10.1080/19390211.2018.1494662
  23. Characterization of the MYB Genes Reveals Insights Into Their Evolutionary Conservation, Structural Diversity, and Functional Roles in Magnaporthe oryzae vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.721530
  24. Calcium signaling is involved in diverse cellular processes in fungi vol.12, pp.1, 2009, https://doi.org/10.1080/21501203.2020.1785962