DOI QR코드

DOI QR Code

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes

  • Bolten, Christoph J. (Biochemical Engineering, Saarland University) ;
  • Heinzle, Elmar (Biochemical Engineering, Saarland University) ;
  • Muller, Rolf (Pharmaceutical Biotechnology, Saarland University) ;
  • Wittmann, Christoph (Biochemical Engineering, Saarland University)
  • Received : 2008.03.18
  • Accepted : 2008.06.13
  • Published : 2009.01.31

Abstract

In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

Keywords

References

  1. Bacon, K., D. Clutter, R. H. Kottel, M. Orlowski, and D. White. 1975. Carbohydrate accumulation during myxospore formation in Myxococcus xanthus. J. Bacteriol. 124: 1635-1636
  2. Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596 https://doi.org/10.1128/AEM.71.12.8587-8596.2005
  3. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917 https://doi.org/10.1139/o59-099
  4. Bode, H. B. and R. M$\ddot{u}$ller. 2006. Analysis of myxobacterial secondary metabolism goes molecular. J. Ind. Microbiol. Biotechnol. 33: 577-588 https://doi.org/10.1007/s10295-006-0082-7
  5. Bode, H. B., B. Zeggel, B. Silakowski, S. C. Wenzel, H. Reichenbach, and R. M$\ddot{u}$ller. 2003. Steroid biosynthesis in prokaryotes: Identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47: 471-481 https://doi.org/10.1046/j.1365-2958.2003.03309.x
  6. Bollag, D. M. 1997. Epothilones: Novel microtubule-stabilising agents. Expert Opin. Investig. Drugs 6: 867-873 https://doi.org/10.1517/13543784.6.7.867
  7. Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325-2333
  8. Dauner, M., J. E. Bailey, and U. Sauer. 2001. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76: 144-156 https://doi.org/10.1002/bit.1154
  9. Fischer, E. and U. Sauer. 2003. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270: 880-891 https://doi.org/10.1046/j.1432-1033.2003.03448.x
  10. Frick, O. and C. Wittmann. 2005. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb. Cell Fact. 4: 30 https://doi.org/10.1186/1475-2859-4-30
  11. Gerth, K., N. Bedorf, G. Hofle, H. Irschik, and H. Reichenbach. 1996. Epothilons A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. (Tokyo) 49: 560-563 https://doi.org/10.7164/antibiotics.49.560
  12. Gerth, K., N. Bedorf, H. Irschik, G. Hofle, and H. Reichenbach. 1994. The soraphens: A family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: Fermentation, isolation, biological properties. J. Antibiot. (Tokyo) 47: 23-31 https://doi.org/10.7164/antibiotics.47.23
  13. Gerth, K., S. Pradella, O. Perlova, S. Beyer, and R. M$\ddot{u}$ller. 2003. Myxobacteria: Proficient producers of novel natural products with various biological activities -- past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253 https://doi.org/10.1016/j.jbiotec.2003.07.015
  14. Gerth, K., D. Schummer, G. Hofle, H. Irschik, and H. Reichenbach. 1995. Ratjadon: A new antifungal compound from Sorangium cellulosum (myxobacteria)-production, physiochemical and biological properties. J. Antibiot. (Tokyo) 48:973-976 https://doi.org/10.7164/antibiotics.48.973
  15. Gombert, A. K., M. Moreira dos Santos, B. Christensen, and J. Nielsen. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183:1441-1451 https://doi.org/10.1128/JB.183.4.1441-1451.2001
  16. Hardt, I. H., H. Steinmetz, K. Gerth, F. Sasse, H. Reichenbach, and G. Hofle. 2001. New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: Isolation, structure elucidation, and SAR studies. J. Nat. Prod. 64: 847-856 https://doi.org/10.1021/np000629f
  17. Hofman, U. 1989. Physiologische Studien an Sorangium cellulosum, So ce 12. Technical University, Braunschweig
  18. Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Chivosazol A, a new inhibitor of eukaryotic organisms isolated from myxobacteria. J. Antibiot. (Tokyo) 48: 962-966 https://doi.org/10.7164/antibiotics.48.962
  19. Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Disorazol A, an efficient inhibitor of eukaryotic organisms isolated from myxobacteria. J. Antibiot. (Tokyo) 48: 31-35 https://doi.org/10.7164/antibiotics.48.31
  20. Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1987. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J. Antibiot. (Tokyo) 40: 7-13 https://doi.org/10.7164/antibiotics.40.7
  21. Irschik, H., R. Jansen, K. Gerth, G. Hofle, and H. Reichenbach. 1995. Sorangiolid A, a new antibiotic isolated from the myxobacterium Sorangium cellulosum So ce 12. J. Antibiot. (Tokyo) 48: 886-887 https://doi.org/10.7164/antibiotics.48.886
  22. Kromer, J. O., M. Fritz, E. Heinzle, and C. Wittmann. 2005. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal. Biochem. 340: 171-173 https://doi.org/10.1016/j.ab.2005.01.027
  23. Kromer, J. O., O. Sorgenfrei, K. Klopprogge, E. Heinzle, and C. Wittmann. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186:1769-1784 https://doi.org/10.1128/JB.186.6.1769-1784.2004
  24. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  25. Mahmud, T., H. B. Bode, B. Silakowski, R. M. Kroppenstedt, M. Xu, S. Nordhoff, G. Hofle, and R. Muller. 2002. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. J. Biol. Chem. 277: 32768-32774 https://doi.org/10.1074/jbc.M205222200
  26. Minnikin, D. E., L. Alshamaony, and M. Goodfellow. 1975. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88: 200-204 https://doi.org/10.1099/00221287-88-1-200
  27. Noguchi, Y., Y. Nakai, N. Shimba, H. Toyosaki, Y. Kawahara, S. Sugimoto, and E. Suzuki. 2004. The energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P NMR using a circulating fermentation system. J. Biochem. (Tokyo) 136: 509-515 https://doi.org/10.1093/jb/mvh147
  28. Pirt, S. J. 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B Biol. Sci. 163: 224-231 https://doi.org/10.1098/rspb.1965.0069
  29. Pradella, S., A. Hans, C. Sproer, H. Reichenbach, K. Gerth, and S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178: 484-492 https://doi.org/10.1007/s00203-002-0479-2
  30. Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27: 149-156 https://doi.org/10.1038/sj.jim.7000025
  31. Reichenbach, H. 1986. The myxobacteria: Common organisms with uncommon behaviour. Microbiol. Sci. 3: 268-274
  32. Sauer, U., F. Canonaco, S. Heri, A. Perrenoud, and E. Fischer. 2004. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279: 6613-6619 https://doi.org/10.1074/jbc.M311657200
  33. Sauer, U. and B. J. Eikmanns. 2005. The PEP-pyruvateoxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29: 765-794 https://doi.org/10.1016/j.femsre.2004.11.002
  34. Schneiker, S., O. Perlova, A. Alici, M. O. Altmeyer, D. Bartels, T. Bekel, et al. 2007. Complete sequence of the largest known bacterial genome from the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 25: 1281-1289 https://doi.org/10.1038/nbt1354
  35. Stouthamer, A. H. 1979. The search for correlation between theoretical and experimental growth yields, pp. 1-47. In J. R. Quayle (ed.), Microbial Biochemistry, Vol. 21. University Park Press, Baltimore
  36. Thomas, E., J. Tabernero, M. Fornier, P. Conte, P. Fumoleau, A. Lluch, et al. 2007. Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in patients with taxaneresistant metastatic breast cancer. J. Clin. Oncol. 25: 3399-3406 https://doi.org/10.1200/JCO.2006.08.9102
  37. van Winden, W. A., C. Wittmann, E. Heinzle, and J. J. Heijnen. 2002. Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol. Bioeng. 80: 477-479 https://doi.org/10.1002/bit.10393
  38. Watson, B. F. and M. Dworkin. 1968. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 96: 1465-1473
  39. Wittmann, C. 2002. Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol. 74: 39-64
  40. Wittmann, C. and A. de Graaf. 2005. Metabolic flux analysis in Corynebacterium glutamicum, pp. 277-304. In L. Eggeling and M. Bott (eds.), Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton
  41. Wittmann, C., M. Hans, and E. Heinzle. 2002. In vivo analysis of intracellular amino acid labelings by GC/MS. Anal. Biochem. 307: 379-382 https://doi.org/10.1016/S0003-2697(02)00030-1
  42. Wittmann, C. and E. Heinzle. 2002. Genealogy profiling through strain improvement by using metabolic network analysis: Metabolic flux genealogy of several generations of lysineproducing corynebacteria. Appl. Environ. Microbiol. 68: 5843-5859 https://doi.org/10.1128/AEM.68.12.5843-5859.2002
  43. Wittmann, C. and E. Heinzle. 1999. Mass spectrometry for metabolic flux analysis. Biotechnol. Bioeng. 62: 739-750 https://doi.org/10.1002/(SICI)1097-0290(19990320)62:6<739::AID-BIT13>3.0.CO;2-E
  44. Wittmann, C. and E. Heinzle. 2001. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metab. Eng. 3: 173-191 https://doi.org/10.1006/mben.2000.0178
  45. Wittmann, C., P. Kiefer, and O. Zelder. 2004. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287 https://doi.org/10.1128/AEM.70.12.7277-7287.2004
  46. Wittmann, C., H. M. Kim, and E. Heinzle. 2004. Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol. Bioeng. 87: 1-6 https://doi.org/10.1002/bit.20103
  47. Wittmann, C., H. M. Kim, G. John, and E. Heinzle. 2003. Characterization and application of an optical sensor for quantification of dissolved $O_2$ in shake-flasks. Biotechnol. Lett. 25: 377-380 https://doi.org/10.1023/A:1022402212537

Cited by

  1. Myxobacteria—‘microbial factories’ for the production of bioactive secondary metabolites vol.5, pp.6, 2009, https://doi.org/10.1039/b901287g
  2. The impact of genomics on the exploitation of the myxobacterial secondary metabolome vol.26, pp.11, 2009, https://doi.org/10.1039/b817073h
  3. Complete genome sequence of Haliangium ochraceum type strain (SMP-2 T ) vol.2, pp.1, 2009, https://doi.org/10.4056/sigs.69.1277
  4. Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism vol.88, pp.5, 2010, https://doi.org/10.1007/s00253-010-2854-2
  5. Systems metabolic engineering of xylose-utilizingCorynebacterium glutamicumfor production of 1,5-diaminopentane vol.8, pp.5, 2013, https://doi.org/10.1002/biot.201200367
  6. Systems‐wide analysis and engineering of metabolic pathway fluxes in bio‐succinate producing Basfia succiniciproducens vol.110, pp.11, 2009, https://doi.org/10.1002/bit.24963
  7. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi‐omics perspective vol.16, pp.6, 2014, https://doi.org/10.1111/1462-2920.12438
  8. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00615
  9. Metabolic flux analysis in Ashbya gossypii using 13 C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions vol.17, pp.None, 2018, https://doi.org/10.1186/s12934-018-1003-y
  10. Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related ‘Omics Studies vol.9, pp.10, 2021, https://doi.org/10.3390/microorganisms9102143