DOI QR코드

DOI QR Code

Improving the Productivity of Recombinant Protein in Escherichia coli Under Thermal Stress by Coexpressing GroELS Chaperone System

  • Kim, So-Yeon (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Ayyadurai, Niraikulam (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Heo, Mi-Ae (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Jeong, Yong-Joo (Division of Nano Science, Kook Min University) ;
  • Lee, Sun-Gu (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
  • Received : 2008.02.27
  • Accepted : 2008.06.15
  • Published : 2009.01.31

Abstract

Here, we demonstrate that the overexpression of the GroELS chaperone system, which assists the folding of intracellular proteins and prevents aggregation of its biological targets, can enhance the thermotolerance of Escherichia coli strains and facilitate the production of recombinant protein under thermal stress. The overexpression of GroELS led to an about 2-fold higher growth rate of E. coli XL-1 blue than control at $45^{\circ}C$ and induced the growth of the strain even at $50^{\circ}C$, although the growth was not sustained in the second-round culture. The effect of GroELS overexpression was also effective on other E. coli strains such as JM109, $DH5{\alpha}$, and BL21. Finally, we have shown that coexpression of GroELS allows us to produce recombinant protein even at $50^{\circ}C$, a temperature at which the protein production based on E. coli is not efficient. This study indicates that the employment of the GroELS overexpression system can expand the range of environmental conditions for E. coli.

Keywords

References

  1. Austain, B. 1988. Methods in Aquatic Bacteriology, pp. 222-231. Wiley-Interscience
  2. Baneyx, F. and M. Muhacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399-1408 https://doi.org/10.1038/nbt1029
  3. Betiku, E. 2006. Molecular chaperones involved in heterologous protein folding in Escherichia coli. Biotech. Mol. Biol. Rev. 1: 66-75
  4. Bulter, T., S. G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao. 2004. Design of artificial cell-cell communication using gene and metabolic network. Proc. Natl. Acad. Sci. U.S.A. 101: 2299-2304 https://doi.org/10.1073/pnas.0306484101
  5. Chow, K. C. and W. L. Tung. 1998. Overexpression of dnak/ dnaJ and GroEL confers freeze tolerance to E. coli. Biochem. Biophys. Res. Commun. 253: 502-505 https://doi.org/10.1006/bbrc.1998.9766
  6. Desmond, C., G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70: 5929-5936 https://doi.org/10.1128/AEM.70.10.5929-5936.2004
  7. Ferrer, M., T. N. Chernikova, M. M. Yakimove, P. N. Golyshin, and K. N. Timmis. 2003. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21:1266-1267 https://doi.org/10.1038/nbt1103-1266b
  8. Georgopoulos, C. and W. J. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9: 601-634 https://doi.org/10.1146/annurev.cb.09.110193.003125
  9. Guisbert, E., C. Herman, C. Z. Lu, and C. A. Gross. 2004. A chaperone network controls the heat shock response in E. coli. Genes Dev. 18: 2812-2821 https://doi.org/10.1101/gad.1219204
  10. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation and high-level expression by vectors containing the arabinose BAD promoter. J. Bacteriol. 177: 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
  11. Heo, M. A., S. H. Kim, S. Y. Kim, Y. J. Kim, J. Chung, M. K. Oh, and S. G. Lee. 2006. Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr. Purif. 47: 203-209 https://doi.org/10.1016/j.pep.2005.12.003
  12. Hisotsuyanagi, K. 1979. Stepwise introduction of regulatory genes stimulating production of $\alpha$-amylase into Bacillus subtilis: Construction of $\alpha$-amylase extra hyper producing strain. Agric. Biol. Chem. 43: 2343-2349 https://doi.org/10.1271/bbb1961.43.2343
  13. Hoffmann, F. and U. Rinas. 2004. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 143-161
  14. Juneja, V. K., P. G. Klein, and B. S. Marmer. 1998. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef. J. Appl. Microbiol. 84: 677-684 https://doi.org/10.1046/j.1365-2672.1998.00396.x
  15. Kerner, M. J., D. J. Naylor, Y. Ishihama, T. Maier, H. C. Chang, A. P. Stines, et al. 2005. Proteome-wide analysis of chaperonindependent protein folding in Escherichia coli. Cell 122: 209-220 https://doi.org/10.1016/j.cell.2005.05.028
  16. Lee, J. H., M. A Heo, J. H. Seo, J. H. Kim, B. G. Kim, and S. G. Lee. 2008. Improving the growth rate of Escherichia coli DH5 alpha at low temperature through engineering of GroEL/S chaperone system. Biotechnol. Bioeng. 99: 515-520 https://doi.org/10.1002/bit.21616
  17. Lee, S. G., J. O. Lee, J. K. Yi, and B. G. Kim. 2002. Production of cytidine 5-monophosphate N-acetylneuraminic acid using recombinant E. coli as a biocatalyst. Biotechnol. Bioeng. 80: 516-524 https://doi.org/10.1002/bit.10398
  18. Mogk, A., T. Tomoyasu, P. Goloubinoff, S. Rudiger, D. Roder, H. Langen, and B. Bukau. 1999. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18: 6934-6949 https://doi.org/10.1093/emboj/18.24.6934
  19. Nakamura, T., M. Tanaka, A. Maruyama, Y. Higashi, and Y. Kurusu. 2004. A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature. Biosci. Biotechnol. Biochem. 68: 2498-2504 https://doi.org/10.1271/bbb.68.2498
  20. Nishihara, K., M. Kanemori, M. Kitakawa, H. Yanaki and T. Yura. 1998. Chaperone coexpression plasmids: Differential and synergenic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in E. coli. Appl. Environ. Microbiol. 64: 1694-1699
  21. Nishihara, K., M. Kanemori, M. Kitakawa, H. Yanaki, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in E. coli. Appl. Environ. Microbiol. 66: 884-889 https://doi.org/10.1128/AEM.66.3.884-889.2000
  22. Paik, S. K., H. S. Yun, H. Y. Sohn, and I. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
  23. Sambrook, J. and D. W. Russel, 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed., pp. 213. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  24. Seo, J. S., Y. M. Lee, H. G. Park, and J. S. Lee. 2006. The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem. Biophys. Res. Commun. 340: 901-908 https://doi.org/10.1016/j.bbrc.2005.12.086
  25. Shigapova, N., Z. Torok, G. Balogh, P. Goloubinoff, L. Vigh, and I. Horvath. 2005. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in E. coli. Biochem. Biophys. Res. Commun. 328: 1216-1223 https://doi.org/10.1016/j.bbrc.2005.01.081
  26. Walter, S. and J. Buchner. 2002. Molecular chaperones. Angew. Chem. Int. Ed. 41: 1098-1113 https://doi.org/10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
  27. Young, J. C., V. R. Agashe, K. Siegers, and F. U. Hartl. 2004. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. 5: 781-791 https://doi.org/10.1038/nrm1492

Cited by

  1. Cooperativity of ${\alpha}$- and ${\beta}$-Subunits of Group II Chaperonin from the Hyperthermophilic Archaeum Aeropyrum pernix K1 vol.21, pp.2, 2009, https://doi.org/10.4014/jmb.1010.10010
  2. Encapsulation of Nanoparticles Using Nitrilotriacetic Acid End‐Functionalized Polystyrenes and Their Application for the Separation of Proteins vol.22, pp.19, 2009, https://doi.org/10.1002/adfm.201200849
  3. Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli vol.93, pp.3, 2009, https://doi.org/10.1007/s00253-011-3599-2
  4. Global Transcriptional Response to Heat Shock of the Legume Symbiont Mesorhizobium loti MAFF303099 Comprises Extensive Gene Downregulation vol.21, pp.2, 2009, https://doi.org/10.1093/dnares/dst050
  5. Water-Soluble Humic Materials Modulating Metabolism and Triggering Stress Defense in Sinorhizobium fredii vol.9, pp.1, 2009, https://doi.org/10.1128/spectrum.00293-21