DOI QR코드

DOI QR Code

One-Step Simultaneous Immunochromatographic Strip Test for Multianalysis of Ochratoxin A and Zearalenone

  • Shim, Won-Bo (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University) ;
  • Dzantiev, Boris B. (A.N.Bach Institute of Biochemistry, Russian Academy of Sciences) ;
  • Eremin, Sergei A. (Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University) ;
  • Chung, Duck-Hwa (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University)
  • Received : 2008.02.04
  • Accepted : 2008.06.16
  • Published : 2009.01.31

Abstract

Individual immunochromatographic assays (ICG) for ochratoxin A (OTA) and zearalenone (ZEA) were optimized and used in the development of a one-step simultaneous immunochromatographic assay (OS-ICG) for the rapid multianalysis of two mycotoxins in corn samples. The nitrocellulose membrane of the OS-ICG was treated with OTA-bovine serum albumin (BSA), ZEA-ovalbumin (OVA), and anti-mouse IgG in the OTA test, ZEA test, and control zones, respectively. Monoclonal antibody-gold conjugates (OTA3 MAb-gold and ZEA2C5 MAb-gold) were sprayed onto the conjugate pad. The visual detection limits were 2.5 and 5 ng/ml for OTA and ZEA, respectively, and the results were obtained within 15 min after starting the analysis. An efficient, simple, and rapid extraction method using 30% MeOH/PBS was established and validated by analyzing the corn samples spiked with OTA/ZEA mixtures (0/0, 5/10, 10/20, and $20/30\;{\mu}g/kg$). The cut-off values of the OS-ICG for the spiked corn were 5 and $10\;{\mu}g/kg$ for OTA and ZEA, respectively. Natural corn samples were analyzed by OS-ICG, direct competitive enzyme-linked immunosorbent assay (DC-ELISA), and HPLC. Results of the OS-ICG were in good agreement with those obtained by DC-ELISA and HPLC. The developed OS-ICG offers a rapid, easy-to-use, and portable analytical system and can be used as a convenient qualitative tool for the on-site simultaneous determination of OTA and ZEA in cereals, food, and agricultural products in one analytical cycle.

Keywords

References

  1. Andrea, D., J. Muller, and B. Hock. 1999. Stabilization of enzyme immunoassays for atrazine. Anal. Chim. Acta 362: 35-45 https://doi.org/10.1016/S0003-2670(97)00607-7
  2. Cho, Y. J., D. H. Lee, D. O. Kim, W. K. Min, K. T. Bong, G. G. Lee, and J. H. Seo. 2005. Production of a monoclonal antibody against ochratoxin A and its application to immunochromatographic assay. J. Agric. Food Chem. 53: 8447-8451 https://doi.org/10.1021/jf051681q
  3. Domijan, A. M., M. Peraica, Z. Jurjevic, D. Ivic, and B. Cvjetkovic. 2005. Fumonisin B1, fumonisin B2, zearalenone and ochratoxin A contamination of maize in Croatia. Food Addit. Contam. 22: 677-680 https://doi.org/10.1080/02652030500132927
  4. European Commission. 2002. Commission Directive 2002/26/ EC of 13 March 2002 laying down the sampling methods and the methods of analysis for the official control of the levels of ochratoxin A in foodstuffs. Off. J. Eur. Commun. L 75: 38-43
  5. European Commission. 2006. Commission Regulation 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 364: 5-24
  6. Frens, G. 1973. Preparation of gold dispersions of varying particle size: Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat. Phys. Sci. 241: 20-22 https://doi.org/10.1038/physci241020a0
  7. Galfre, G., S. C. Howe, C. Milstein, G. W. Butcher, and J. C. Howard. 1977. Antibodies to major histocompatability antigens produced by hybrid cell lines. Nature 266: 550-552 https://doi.org/10.1038/266550a0
  8. IARC (International Agency for Research on Cancer). 2002. Monographs on the evaluation of carcinogenic risk to human, pp. 169-366. In: Some Traditional Medicenes, Some Mycotoxins, Naphthalene and Styrene. International Agency for Research on Cancer, Lyon
  9. Jin, Y., J. W. Jang, M. H. Lee, and C. H. Han. 2006. Development of ELISA and immunochromatographic assay for the detection of neomycin. Clin. Chim. Acta 364: 260-266 https://doi.org/10.1016/j.cca.2005.07.024
  10. Kaur, J., K. V. Singh, R. Boro, K. R. Thampi, M. Raje, G. C. Varshney, and C. R. Suri. 2007. Immunochromatographic dipstick assay format using gold nanoparticles labeled protein-hapten conjugate for the detection of atrazine. Environ. Sci. Technol. 41: 5028-5036 https://doi.org/10.1021/es070194j
  11. Kawamura, O., S. Sato, H. Kajii, S. Nagayama, K. Ohtani, J. Chiba, and Y. Ueno. 1989. A sensitive enzyme-linked immunosorbent assay of ochratoxin A based on monoclonal antibodies. Toxicon 27: 887-897 https://doi.org/10.1016/0041-0101(89)90100-1
  12. Kolosova, A. Y., S. De Saeger, L. Sibanda, R. Verheijen, and V. Van Peteghem. 2007. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Anal. Bioanal. Chem. 389: 2103-2107 https://doi.org/10.1007/s00216-007-1642-z
  13. Kolosova, A. Y., W. B. Shim, Z. Y. Yang, S. A. Eremin, and D. H. Chung. 2006. Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal. Bioanal Chem. 384: 286-294 https://doi.org/10.1007/s00216-005-0103-9
  14. Lattanzio, V. M., M. Solfrizzo, S. Powers, and A. Visconti. 2007. Simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. Rapid Commun. Mass Spectrom. 21: 3253-3261 https://doi.org/10.1002/rcm.3210
  15. Li, J., Y. Yu, M. Tian, H. Wang, F. Wei, L. Li, and X. Wang. 2006. Simultaneous determination of aflatoxins, zearalenone and ochratoxin A in cereal grains by immunoaffinity column and high performance liquid chromatography coupled with post-column photochemical derivatization. Se Pu 24: 581-584
  16. Liu, R., Z. Yu, Q. He, and Y. Xu. An immunoassay for ochratoxin A without the mycotoxin. Food Control 18: 872-877 https://doi.org/10.1016/j.foodcont.2006.05.002
  17. Maragos, C. M. and E. K. Kim. 2004. Detection of zearalenone and related metabolites by fluorescence polarization immunoassay. J. Food Prot. 67: 1039-1047
  18. Ngundi, M. M., L. C. Shirve-Lake, M. H. Moore, F. S. Ligler, and C. R. Taitt. 2006. Multiplexed detection of mycotoxins in foods with a regenerable array. J. Food Prot. 69: 3047-3051 https://doi.org/10.4315/0362-028X-69.12.3047
  19. Rosa, C. A. R., C. E. Magnoli, M. E. Fraga, A. M. Dalcero, and M. N. Santana. 2004. Occurrence of ochratoxin A in wine and grape juice marketed in Rio de Janeiro, Brazil. Food Addit. Contam. 21: 358-364 https://doi.org/10.1080/02652030310001639549
  20. Roth, J. 1982. Applications of immunocolloids in light microscopy: Preparation of protein A-silver and protein A-gold complexes and their applications for localization of single and multiple antigens in paraffin sections. J. Histochem. Cytochem. 30: 691-696
  21. Sangare-Tigori, B., S. Moukha, H. J. Kouadio, A. M. Betbeder, D. S. Dano, and E. E. Creppy. 2006. Co-occurrence of aflatoxin B1, fumonisin B1, ochratoxin A and zearalenone in cereals and peanuts from C$\^{o}$te d'Ivoire. Food Addit. Contam. 23: 1000-1007 https://doi.org/10.1080/02652030500415686
  22. Santos, E. A. and E. A. Vargas. 2002. Immunoaffinity column clean-up and thin layer chromatography for determination of ochratoxin A in green coffee. Food Addit. Contam. 19: 447-458 https://doi.org/10.1080/02652030110213717
  23. Sapsford, K. E., M. M. Ngundi, M. H. Moore, M. E. Lassman, L. C. Shriver-Lake, C. R. Taitt, and F. S. Ligler. 2006. Rapid detection of foodborne contamination using an array biosensor. Sens. Actuators B Chem. 113: 599-607 https://doi.org/10.1016/j.snb.2005.07.008
  24. Schollenberger, M., H. M. Muller, M. Rufle, S. Suchy, S. Planck, and W. Drochner. 2006. Natural occurence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161: 43-52 https://doi.org/10.1007/s11046-005-0199-7
  25. Shim, W. B., A. Y. Kolosova, Y. J. Kim, Z. Y. Yang, S. J. Park, S. A. Eremin, I. S. Lee, and D. H. Chung. 2004. Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A. Int. J. Food Sci. Tech. 39: 829-837 https://doi.org/10.1111/j.1365-2621.2004.00856.x
  26. Shim, W. B., Z. Y. Yang, J. S. Kim, J. Y. Kim, S. J. Kang, G. J. Woo, Y. C. Chung, S. A. Eremin, and D. H. Chung. 2007. Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples. J. Microbiol. Biotechnol. 17: 1629-1637
  27. Shim, W. B., Z. Y. Yang, J. Y. Kim, J. G. Choi, J. H. Je, S. J. Kang, A. Y. Kolosova, S. A. Eremin, and D. H. Chung. 2006. Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples. J. Agric. Food Chem. 54: 9728-9734 https://doi.org/10.1021/jf0620057
  28. Shumacher, R. and R. Krska. 2001. International interlaboratory study for the determination of the Fusarium mycotoxins zearalenone and deoxynivalenol in agricultural commodities. Food Addit. Contam. 18: 417-430 https://doi.org/10.1080/02652030120332
  29. Suzuki, T., Y. Munakata, K. Morita, T. Shinoda, and H. Ueda. 2007. Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay. Anal. Sci. 23: 65-70 https://doi.org/10.2116/analsci.23.65
  30. Thouvenot, D. R. and R. F. Morfin. 1983. Radioimmunoassay for zearalenone and zearalanol in human serum: Production, properties, and use of porcine antibodies. Appl. Environ. Microbiol. 45: 16-23
  31. Tiemann, U. and S. Danicke. 2007. In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: A review. Food Addit. Contam. 24: 306-314 https://doi.org/10.1080/02652030601053626
  32. Urraca, J. J., E. Benito-Pena, C. Perez-Conde, M. C. Moreno- Bondi, and J. J. Pestka. 2005. Analysis of zearalenone in cereal and swine feed samples using an automated flow-through immunosensor. J. Agric. Food Chem. 53: 3338-3344 https://doi.org/10.1021/jf048092p
  33. Varelis, P., S. L. Leong, A. Hocking, and G. Giannikopoulos. 2006. Quantitative analysis of ochratoxin A in wine and beer using solid phase extraction and high performance liquid chromatographyfluorescence detection. Food Addit. Contam. 23: 1308-1315 https://doi.org/10.1080/02652030600838258
  34. Wang, X., K. Li, D. Shi, X. Jin, N. Xiong, F. Peng, D. Peng, and D. Bi. 2007. Development and validation of an immunochromatographic assay for rapid detection of sulfadiazine in eggs and chickens. J. Chromatogr. B 847: 289-295 https://doi.org/10.1016/j.jchromb.2006.10.038

Cited by

  1. High-sensitivity express immunochromatographic method for detection of plant infection by tobacco mosaic virus vol.74, pp.9, 2009, https://doi.org/10.1134/s0006297909090065
  2. Toxicological Studies of Mycotoxins Using Enzymatic and Histochemical Methods vol.9, pp.3, 2009, https://doi.org/10.1007/s11267-009-9211-4
  3. Mycotoxins in Food and Feed: Present Status and Future Concerns vol.9, pp.1, 2009, https://doi.org/10.1111/j.1541-4337.2009.00094.x
  4. Immunochemical methods of mycotoxin analysis (review) vol.46, pp.3, 2009, https://doi.org/10.1134/s0003683810030038
  5. Rapid Visual Tests: Fast and Reliable Detection of Ochratoxin A vol.2, pp.9, 2010, https://doi.org/10.3390/toxins2092230
  6. Development of a multiplex flow cytometric microsphere immunoassay for mycotoxins and evaluation of its application in feed vol.27, pp.1, 2009, https://doi.org/10.1007/s12550-010-0077-0
  7. A lateral flow immunoassay for measuring ochratoxin A: Development of a single system for maize, wheat and durum wheat vol.22, pp.12, 2009, https://doi.org/10.1016/j.foodcont.2011.05.012
  8. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology vol.33, pp.15, 2009, https://doi.org/10.1002/elps.201200050
  9. Production of a highly group-specific monoclonal antibody against zearalenone and its application in an enzyme-linked immunosorbent assay vol.13, pp.2, 2009, https://doi.org/10.4142/jvs.2012.13.2.119
  10. Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize vol.28, pp.1, 2009, https://doi.org/10.1016/j.foodcont.2012.04.035
  11. Immunochemical Methods for Ochratoxin A Detection: A Review vol.4, pp.12, 2009, https://doi.org/10.3390/toxins4040244
  12. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review vol.405, pp.2, 2009, https://doi.org/10.1007/s00216-012-6033-4
  13. Rapid Simultaneous Quantification of Zearalenone and Fumonisin B1 in Corn and Wheat by Lateral Flow Dual Immunoassay vol.61, pp.21, 2009, https://doi.org/10.1021/jf400803q
  14. Selection and identification of ssDNA aptamers recognizing zearalenone vol.405, pp.20, 2009, https://doi.org/10.1007/s00216-013-7085-9
  15. Selection and identification of ssDNA aptamers recognizing zearalenone vol.405, pp.20, 2009, https://doi.org/10.1007/s00216-013-7085-9
  16. Development of a Simultaneous Lateral Flow Strip Test for the Rapid and Simple Detection of Deoxynivalenol and Zearalenone vol.79, pp.10, 2014, https://doi.org/10.1111/1750-3841.12647
  17. Simultaneous determination of several mycotoxins by rapid immunofiltration assay vol.69, pp.6, 2009, https://doi.org/10.1134/s1061934814060045
  18. An immunochemical method for the determination of Ochratoxine A in the wine and its applications. vol.60, pp.9, 2009, https://doi.org/10.18832/kp2014021
  19. Development of an Immunochromatographic Strip Test for the Rapid Detection of Zearalenone in Corn vol.62, pp.46, 2009, https://doi.org/10.1021/jf503092j
  20. A Magnetic Nanoparticle Based Enzyme-Linked Immunosorbent Assay for Sensitive Quantification of Zearalenone in Cereal and Feed Samples vol.7, pp.10, 2009, https://doi.org/10.3390/toxins7104216
  21. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay vol.106, pp.None, 2015, https://doi.org/10.1016/j.toxicon.2015.09.028
  22. Fungal Decontamination of Fleshy Fruit Water Washes by Double Atmospheric Pressure Cold Plasma vol.44, pp.2, 2009, https://doi.org/10.1002/clen.201400575
  23. Fluorescence Polarization Immunoassay Based on a New Monoclonal Antibody for the Detection of the Zearalenone Class of Mycotoxins in Maize vol.65, pp.10, 2009, https://doi.org/10.1021/acs.jafc.6b05614
  24. Colloidal gold‐McAb probe‐based rapid immunoassay strip for simultaneous detection of fumonisins in maize vol.97, pp.7, 2009, https://doi.org/10.1002/jsfa.8032
  25. Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three Fusarium Mycotoxins in Maize vol.65, pp.36, 2017, https://doi.org/10.1021/acs.jafc.7b02827
  26. Au/Fe3O4 core-shell nanoparticles are an efficient immunochromatography test strip performance enhancer-a comparative study with Au and Fe3O4 nanoparticles vol.8, pp.25, 2018, https://doi.org/10.1039/c8ra00185e
  27. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food vol.58, pp.10, 2009, https://doi.org/10.1080/10408398.2016.1276048
  28. Nanotechnology: current uses and future applications in the food industry vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-018-1104-7
  29. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples vol.19, pp.11, 2009, https://doi.org/10.1631/jzus.b1800085
  30. Rapid and Simple Detection of Ochratoxin A using Fluorescence Resonance Energy Transfer on Lateral Flow Immunoassay (FRET-LFI) vol.11, pp.5, 2009, https://doi.org/10.3390/toxins11050292
  31. Multiplex Detection of Nucleic Acids Using Recombinase Polymerase Amplification and a Molecular Colorimetric 7-Segment Display vol.4, pp.7, 2009, https://doi.org/10.1021/acsomega.9b01097