니켈 함유폐수의 독성평가 및 처리방안에 대한 연구

Research of the Toxic Estimation and Treatment Method of Wastewater Including Nickel

  • 김만수 (대양바이오테크(주) 부설환경기술연구소) ;
  • 황환민 (강원대학교 환경공학과) ;
  • 박종운 (대양바이오테크(주) 부설환경기술연구소)
  • Kim, Man-Soo (Environmental Technology Institute, Dae-Yang, Bio Tech Co., LTD) ;
  • Hwang, Hwan-Min (Department of Environmental Engineering, Kangwon National University) ;
  • Park, Jong-Woon (Environmental Technology Institute, Dae-Yang, Bio Tech Co., LTD)
  • 투고 : 2009.06.26
  • 심사 : 2009.09.28
  • 발행 : 2009.11.30

초록

본 연구는 산업단지 폐수종말처리 시설내로 유입되는 니켈폐수의 독성평가 및 이의 효과적 처리방안을 도출하기 위하여 수행되었다. 처리장내로 유입되는 폐수를 24시간 동안 1시간 간격으로 시료를 채취하여 니켈 농도를 분석한 결과 0.33 mg/L~116.0 mg/L의 농도범위로 조사되었으며, 평균 24.0 mg/L로 조사되었다. 본 대상폐수의 농축질화균을 이용한 니켈의 독성도 조사 결과 Nitrosomonas와 Nitrobacter에 대한 $IC_{50}$값이 각각 5.5 및 4.9 mg/L인 것으로 나타났으며, 이는 본 유입폐수를 5배 희석하여 주입하여도 질산화 미생물의 50%를 사멸시킬 수 있는 농도인 것으로 나타났다. 또한 Nickel hydroxide형성에 의한 니켈 제거효율 실험결과 응집 pH에 따라 잔류 니켈 농도는 pH 11에서 1.7 mg/L, pH 12에서 0.6 mg/L로 나타났으며, 이는 상기 니켈 함유 폐수의 $NH_4$-N 및 $NO_3$-N에 대한 $IC_{50}$ 독성농도 조사 결과와 비교시 69.1~89.1% 및 65.3~87.8%의 독성도가 제거될 것으로 판단된다. 따라서 pH 10~11 이상으로 니켈 함유폐수를 응집처리 후 생물학적 처리를 수행한 결과 83.8%~99.4%의 범위로 평균 97.6%의 질산화 반응효율을 얻을 수 있었다.

This study was performed to evaluate the toxicity and seek the control method of the wastewater in which nickel (Ni) was included into an industrial wastewater treatment plant. Nickel concentration of the wastewater, of which samples were taken every hour during 24hours, were various from 0.33 to 116.0 mg/L, with 24.0 mg/L of the average concentration. IC50 values against nitrosomonas and nitorbactor, a toxic level against bacteria which could inhibit 50% of nitrification bacteria in the wastewater, are 5.5 and 4.9 mg/L respectively. Nickel in this industrial wastewater can inhibit the 50% of nitrification bacteria even after diluting this wastewater 5 times. Also, this research, which reduced the nickel concentraion, forming nickel hydroxide compounds by increasing pH of the wastewater, shows that nickel concentraion can be obtained under 1.7 mg/L at pH 11 and 0.6 mg/L at pH 12. Consequently, the result of this study is that the nitrification efficiencies can be obtained from 83.8 to 99.4% with 97.6% of the average in the biological treatment after removing nickel in the wastewater by increasing the pH above 11~12, which is forming the nickel hydroxide compounds.

키워드

참고문헌

  1. Beckman, W. J., “Design and Operation of Combined Carbon Oxidation Nitrification Activated Sludge Plant,”J, Water. Pollut. Control. Fed., 44(1972)
  2. Painter, H. A., “A review of literature on inorganic nitrogen metabolism in microorganism,”Wat. Res., 4, 393-450(1970) https://doi.org/10.1016/0043-1354(70)90051-5
  3. Bock, E., P.A. Wilder., and A. Frietag., “Growth of nitrobacter in the absence of dissolved oxygen,”Wat. Res., 22, 245-250(1988) https://doi.org/10.1016/0043-1354(88)90085-1
  4. SKINNER, F. A., and N. WALKER., “Growth of Nitrosomonas europaea in batch and continuous culture,”Arch. Mikrobiol. 38, 399-349(1961)
  5. Bliss, P. J., and D. Barnes., “Biological nitrogen control in wastewater,”J. of Effl. and Wat. Treatment, Feb., 65(1981)
  6. Anthonisen, A. C., Loerhr, R. C., Prakasam, T. B. S., and Srinath, E. G., “Inhibition of nitrification by ammonia and nitrous acid,”J. Water. Pollut. Control. Fed., 48, 835-852(1976)
  7. Painter, H. A., and Loveless, J. E., 'Effect of temperature and pH value on the growth rate constants of nitrifying bacteria in the activated sludge process,' Water Res., 17(3), 237-248(1983) https://doi.org/10.1016/0043-1354(83)90176-8
  8. Johnson, J. L., Stalling, D. L., and Hogan, J. W., “Hexachlorobenzene(HCB) residues in fish,”Bull. Environ. Contam. Toxicol., 11(5), 393-398(1974) https://doi.org/10.1007/BF01685293
  9. Tenney M. W., and Verhoff F. H., “Chemical and autoflocculation of microorganisms in biological wastewater treatment,”Biotechnol. Bioeng., 15, 1045-1073(1973) https://doi.org/10.1002/bit.260150605
  10. Pavoni J. L., Tenney M. W. & Echelberger W. F.,“ Bacterial extracellular polymers and biological flocculation,”J. Water. Pollut. Control Fed., 44, 414-431(1972)
  11. Corpe, W. A., “Metal-binding properties of surface materials from marine bacteria,”Devsind. Microbial, 16, 249-255(1975)
  12. Melanie J. Brown., and J. N. Lester., “Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge-II,”Water Res., 16(11), 1539-1548(1982) https://doi.org/10.1016/0043-1354(82)90206-8