Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures

상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성

  • Kim, Jun-Han (Green Growth Laboratory, Korea Electric Power Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO)) ;
  • Lee, Ji-Hyun (Green Growth Laboratory, Korea Electric Power Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO)) ;
  • Jang, Kyung-Ryong (Green Growth Laboratory, Korea Electric Power Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO)) ;
  • Shim, Jae-Goo (Green Growth Laboratory, Korea Electric Power Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO))
  • 김준한 (한전전력연구원 녹색성장연구소) ;
  • 이지현 (한전전력연구원 녹색성장연구소) ;
  • 장경룡 (한전전력연구원 녹색성장연구소) ;
  • 심재구 (한전전력연구원 녹색성장연구소)
  • Received : 2009.08.11
  • Accepted : 2009.09.11
  • Published : 2009.10.31

Abstract

We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

본 논문에서는 대표적인 이산화탄소 흡수제인 알칸올아민계 흡수제(MEA, AMP, DEA, MDEA)를 사용하여 각 흡수제의 구조에 따른 열화특성을 평가하였다. 흡수제의 열화는 산화성열화(oxidative degradation)와 열적열화(thermal degradation)의 두 가지로 나누어 생각할 수 있다. 산화성열화 실험은 $30^{\circ}C$$60^{\circ}C$의 저온 실험장치에서 이산화탄소 ($CO_2$)와 산소($O_2$)에 대한 열화도를 평가하였으며 열적열화는 $130^{\circ}C$$150^{\circ}C$의 고온에서 이산화탄소에 대한 열화도를 평가하였다. 실험 결과, 흡수제의 산화성열화는 DEA의 열화가 가장 크게 나타났다. 또한, 흡수제의 열적열화는 $150^{\circ}C$에서 대부분의 흡수제에서 발생하였는데 그 중 MEA와 DEA의 열화가 가장 심하였다. 결론적으로 내열화성 측면에서 1차 아민이지만 3차 탄소에 결합되어 입체장애를 갖는 AMP가 가장 우수한 흡수제인 반면, 2차 아민이며 분자내 OH기를 2개 가지며 아민이 노출된 DEA가 열화도 측면에서 가장 좋지 못한 흡수제로 나타났다. 본 논문에서는 다양한 흡수제의 기본구조에 따른 열화 안정성을 평가하여 이산화탄소 흡수를 위한 알칸올아민 흡수제 개발의 기초 자료를 제시하고자 하였다.

Keywords

References

  1. IEA, 'Energy technology perspectives-scenarios & strategies to 2050,' IEA Publication(2006)
  2. Seo, H. J., Yu, E. Y., 'Carbon nanotubes resulted from the carbon dioxide reforming by catalytic pyrolysis to reduce the greenhouse gas,' Environ. Eng. Res., 7(4), 247-252(2002) https://doi.org/10.4491/eer.2002.7.4.247
  3. Olukayode F. D., and Axel, M., 'Mechanism and Kinetics of COS-Induced Diethanolamine Degradation,' Ind. Eng. Chem. Res., 33, 480-487(1994) https://doi.org/10.1021/ie00027a002
  4. Kohl, A. L., and Nielson, R. B., 'Gas Purification', Gulf Publishing, Houston, TX(1997)
  5. Maddox, R. N., 'Gas Conditioning and Liquid Sweetening,' Campbell Petroleum series, Norman, OK(1974)
  6. Shrikar, C., Guptha, A., and Humek, B., 'Advanced technology for the capture of CO2 from flue gases,' first National conference on Carbon Sequestration, Washington, DC, May 15-17, pp. 1-11(2001)
  7. Astarita, G., Savage, D. W., and Bisio, A., 'Gas treating with chemical solvents,' John Wiley & Sons(1992)
  8. Polderman, L. D., Dillo, C. P., and Steele, A. B., 'Why MEA solution breaks down in gas treating service,' Oil Gas J., 53, 69-71(1950)
  9. Kim, C. J., 'Degradation of alkanolamines in gas treating solutions : kinetics of di-2-propanolamine degradation is aqueous solutions containing carbondioxide,' Ind. Eng. Chem. Res., 27(1), 1-3(1988) https://doi.org/10.1021/ie00073a001
  10. Adeola, B., and Raphael, O. I., 'Pathways for the formation of products of the oxidative degradation of $CO_{2}$-loaded concentrated aqueous monoethanolamine solutions during $CO_{2}$absorption from flue gases,' Ind. Eng. Chem. Res., 44, 945-969(2005) https://doi.org/10.1021/ie049329+
  11. Rooney, P., C., Dupart, M., S., and Bacon, T., R., 'Oxygen's role in alkanolamine degradation,' Hydrocarbon Process., Int. Ed., 109-113(1998)
  12. Dennis, W. H., Hull, L., A., and Rosenblatt, D., H., 'Oxidation of Amines. IV. Oxidative Degradation,' J. Org, Chem., 32, 3783-3787(1967) https://doi.org/10.1021/jo01287a012
  13. Hull, L., A., Davis, G., T., and Rosenblatt, D., H., 'Oxidation of Amines. VII Chemical and Electrochemical Correlation,' J. Phys. Chem., 73, 2142-2146(1969) https://doi.org/10.1021/j100727a007
  14. Chi, S., and Rochelle, G. T., 'Oxidative Degradation of Monoethanolamine,' Ind. Eng. Chem. Res., 41, 4178-4186(2002) https://doi.org/10.1021/ie010697c
  15. 정순관, 화학공학연구정보센터 홈페이지, http://www.cheric.org,(2008)