2-Dimensional Unsteady Modeling of Spray Flame Formed in a Laminar Counterflow Field - Effects of Equivalence Ratio and Fuel -

층류 대향류장에 형성된 분무화염의 2차원 비정상 모델링 -당량비 및 연료종에 관한 영향-

  • Hwang, Seung-Min (Department of Health Environment, Graduate School of Venture, Hoseo University) ;
  • Chung, Jin-Do (Department of Environmental Engineering, Hoseo University) ;
  • Seo, Byung-Min (Department of Environmental Engineering, Hoseo University) ;
  • Kim, Young-Woo (Department of Automotive Engineering, Hoseo University)
  • 황승민 (호서대학교 벤처전문대학원 보건환경학과) ;
  • 정진도 (호서대학교 환경공학과) ;
  • 서병민 (호서대학교 환경공학과) ;
  • 김영우 (호서대학교 자동차공학과)
  • Received : 2008.02.05
  • Accepted : 2009.10.05
  • Published : 2009.10.31

Abstract

To evaluate characteristics in spray flame, laminar counterflow is investigated on the effects of equivalence ratio and fuel by a two-dimensional DNS (direct numerical simulation). For the gaseous phase, Eulerian mass, momentum, energy, and species conservation equations are solved. For the disperse phase, all individual droplets are calculated by the Lagrangian method without the parcel model. n-Decane ($C_{10}H_{22}$) and n-heptane ($C_7H_{16}$) is used as a liquid spray fuel, and a one-step global reaction is employed for the combustion reaction model. As equivalence ratio increases, the fuel ignites early and the high temperature region spreads wider. The peak value of temperature, however, tends to once increase and then decreases with increasing equivalence ratio. The decrease in the peak value of temperature for the higher equivalence ratio condition is caused by the cooling effect associated with droplet group combustion. Since the evaporation of n-heptane is early, the high temperature region spreads wider than ndecane, but the peak values of temperature for both n-heptane and n-decane is almost same.

본 연구에서는 분무화염의 기초적인 물리현상을 해명하기 위하여 층류 대향류장에 형성된 분무 화염에 2차원 직접 수치계산(Direct numerical simulation, DNS)을 적용하여, 당량비 및 연료종이 분무화염 구조에 미치는 영향에 대하여 관찰하였다. 기상에 대해서는 질량 보존식, 운동량 보존식, 에너지 보존식을 오일리안(Eulerian) 법으로 계산하였으며, 액적에 대해서는 화염중의 모든 개개의 유적을 라그란지안(Lagrangian) 법으로 추적하였다. 액체 연료로는 n-데칸 ($C_{10}H_{22}$)과 n-헵탄($C_7H_{16}$)을 이용하였으며, 연소반응 모델에는 총괄반응식을 이용하였다. 당량비가 증가함에 따라 착화가 빠르며, 고온영역도 넓게 분포하고 있다. 그러나, 최대 온도치는 당량비가 증가함에 따라 한번 증가한 후 감소하는 경향을 나타내고 있다. 당량비가 클수록 최대 온도가 감소하는 것은 분무화염 내부의 군연소 거동에 의한 냉각효과 때문이라고 생각된다. 또한, n-헵탄은 n-데칸과 비교하여 증발속도가 빠르기 때문에 넓은 고온 영역을 형성하지만 최대 온도는 거의 같은 값을 나타내었다.

Keywords

References

  1. Hwang S.M., Akamatsu F., and Park H.S., 'Evaluation of Combustion Mechanism of Droplet Cluster by Simultaneous Time-Series Measurement in Premixed Spray Flame', J. Eng. Chem., 13(2), 209-213(2007)
  2. Akamatsu F., Mizutani Y., Katsuki M., Tsushima S. and Cho Y. D., 'Measurement of the local group combustion number of droplet clusters in a premixed spray stream', Proc. Combust. 26, 1723-1729(1996) https://doi.org/10.1016/S0082-0784(96)80397-3
  3. Tsushima S., Saitoh H., Akamatsu F., and Katsuki M., 'Observation of combustion characteristics of droplet clusters in a premixed-spray flame by simultaneous monitoring of planar spray images and local chemiluminescence' Proc. Combust. 27, 1967-1974(1998) https://doi.org/10.1016/S0082-0784(98)80041-6
  4. Kurose R., Desjardins O., Nakamura M., Akamatsu F., and Pitsch H., Numerical simulations of spray flames, CTR Annual Research Briefs-2004, Center for Turbulence Research, NASA Ames/Stanford Univ, pp.269-280(2004)
  5. Nakamura M, Akamatsu F, Kurose R., and Katsuki M., 'Combustion mechanism of liquid fuel spray in a gaseous flame', Phys. Fluids, 17, 123-301(2005)
  6. Akamatsu F., Mizutani Y., Katsuki M., Tsushima S., Cho Y.D., and Nakabe K., 'Group combustion behavior of droplets in a premixed-spray flame', Atomization and Sprays, 7(2), 199-218(1997) https://doi.org/10.1615/AtomizSpr.v7.i2.60
  7. 황승민, 김장우, 정진도, '층류 대향류장에 형성된 분무화염의 2차원비정상모델링', 대한환경공학회, 29(11), 1223-1230(2007)
  8. Kee R.J., Dixon-Lewis G., Warnatz J., Coltrin M.E., and Miller J.A., 'A fortran computer code package for the evaluation of gas-phase multicomponent transport properties', SANDIA Report, SAND86-8246, (1986)
  9. Kee R.J., Rupley F.M., and Miller J.A., 'Chemkin-II: A fortran chemical kinetics package for the analysis of gas phase chemical kinetics', SANDIA Report, SAND89-8009B(1989)
  10. Hirata M., and Reid R.C., The properties of gases and liquids, 3rd ed., McGraw-Hill, (1985)
  11. Pitsch H., and Steiner H., 'Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)', Phys. Fluids, 12, 2541-2554(2000) https://doi.org/10.1063/1.1288493
  12. Crowe C.T., Sharma M.P., and Stock D.E., 'The Particle-Source-In Cell (PSI- CELL) model for gas-droplet flows', Trans. ASME, J. Fluids Eng., 99, 325-332 (1977) https://doi.org/10.1115/1.3448756
  13. Miller R.S., Harstad K., and Bellan J., 'Evaluation of equilibrium and non-equilibrium evaporation models for manydroplet gas-liquid flow simulations', J. Multiphase Flow, 24, 1025-1055(1998) https://doi.org/10.1016/S0301-9322(98)00028-7
  14. Miller R.S., and Bellan J., 'Direct numerical simulation of a confined three- dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream', J. Fluid Mech., 384, 293-338(1999) https://doi.org/10.1017/S0022112098004042
  15. Westbrook C.K., and Dryer F.L., 'Chemical kinetic modeling of hydrocarbon combustion', Prog. Eng. Combust. Sci., 10, 1-57(1984) https://doi.org/10.1016/0360-1285(84)90118-7
  16. Patankar S.V., Numerical heat transfer and fluid flow, McGraw-Hill, (1980)
  17. Yamashita H., Shimada M., and Takeno T., 'A numerical study on flame stability at transition point of jet diffusion flames', Proc. Combust. Inst., 26, 27-34(1996) https://doi.org/10.1016/S0082-0784(96)80196-2