미생물연료전지의 전기화학 원리 및 적용

Electrochemical Principles as Applied to Microbial Fuel Cells

  • 김성현 (건국대학교 생명공학과)
  • Kim, Sung-Hyun (Department of Bioscience and Biotechnology, Konkuk University)
  • 발행 : 2009.09.30

초록

키워드

참고문헌

  1. Delahay, P., Double Layer and Electrode Kinetics, Wiley-Interscience, New York, Chap. 2(1965)
  2. Parsons, R., “The electrical double layer: recent experimental and theoretical developments,”Chem. Rev., 90(5), 813-826 (1990) https://doi.org/10.1021/cr00103a008
  3. Parsons, R.,“ The metal-liquid electrolyte interface,”Solid State Ionics, 94, 91-98 (1997) https://doi.org/10.1016/S0167-2738(96)00508-5
  4. Logan, B., Microbial Fuel Cells, John Wiley & Sons, Hoboken, Chaps. 1 and 2(2008)
  5. Pham, T. H., Aelterman, P., and Verstraete, W., “Bioanode performance in bioelectrochemical systems: recent improvements and prospects,” Trends Biotechnol., 27(3), 168-178(2009) https://doi.org/10.1016/j.tibtech.2008.11.005
  6. Logan, B., Hamelers, B., Rozendal, R., Schr der, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K., “Microbial fuel cells: methodology and technology,”Environ. Sci. Technol., 40(17), 5181-5192(2006) https://doi.org/10.1021/es0605016
  7. Du, Z., Li, H., and Gu, T., “A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy,” Biotechnol. Adv., 25, 464-482(2007) https://doi.org/10.1016/j.biotechadv.2007.05.004
  8. Rabaey, K., and Verstraete, W., “Microbial fuel cells: novel biotechnology for energy generation,” Trends Biotechnol., 23(6), 291-298(2005) https://doi.org/10.1016/j.tibtech.2005.04.008
  9. Bard, A. J., and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York(2001)
  10. Sawyer, D. T., Sobkowiak, A., and Roberts, J. L. Jr., Electrochemistry for Chemists, 2nd ed., Wiley-Interscience, New York(1995)
  11. Kissinger, P. T., Preddy, C. R., Shoup, R. E., and Heineman, W. R., “Fundamental Concepts of Analytical Electrochemistry,” Laboratory Techniques in Electroanalytical Chemistry, Kissinger P. T. and Heineman, W. R.(Eds.), Marcel Dekker, New York, pp. 9-50(1984)
  12. 백운기, 박수문, 전기화학 2판, 청문각, 서울, pp. 1-338(2003)
  13. Madigan, M. T., and Martinko, J. M., Brock Biology of Microorganisms, Pearson Education Inc., Upper Saddle River(2006)
  14. Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., Elisen, J. A., Seshadri, R., Ward, N., Methe, B., Clayton, R. A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R. T., Dodson, R. J., Durkin, A. S., Haft, D. H., Kolonay, J. F., Madupu, R., Peterson, J. D., Ymayam, L. A., White, O., Wolf, A. M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee., C., Mueller, J., Hkhouri, H., Gill, J., Utterback, T. R., McDonald, L. A., Feldblyum, T. V., Smith, H. O., Venter, J. C., Nealson, K. H., and Fraser, C. M., “Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis,” Nat. Biotechnol., 20, 1118-1123(2002) https://doi.org/10.1038/nbt749
  15. Larminie, J., and Dicks, A., Fuel Cell Systems Explained, John Wiley & Sons, New York, pp. 17-60(2000)
  16. Logan, B., “Exoelectrogenic bacteria that power microbial fuel cells,” Nat. Rev. Microbiol., doi:10.1038(2009) https://doi.org/10.1038/nrmicro2113
  17. Leonardo, M. R., Daily, Y., and Clark, D. P., “Role of NAD in regulating the adhE gene of Escherichia coli,” J. Bacteriol., 178, 6013-6018(1996) https://doi.org/10.1128/jb.178.20.6013-6018.1996
  18. Kim, H. J., Hyun, M. S., Chang, I. S., and Kim, B. H., “A microbial fuel cell type lactate biosensor using metal-reducing bacterium, Shewanella putrefaciens,” J. Microbiol. Biotechnol., 9(3), 365-367(1999)
  19. Bond, D. R., and Lovley, D. R., "Electricity production by Geobacter sulfurreducens attached to electrodes,” Appl. Environ. Microbiol., 69, 1548-1555(2003) https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  20. Min, B., Cheng, S., and Logan, B. E., “Electricity generation using membrane and salt bridge microbial fuel cells,” Water Res., 39, 1675-1686(2005)
  21. Chaudhuri, S. K., and Lovley, D. R., “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells,” Nat. Biotechnol., 21, 1229-1232 (2003) https://doi.org/10.1038/nbt867
  22. Qiao, Y., Li, C. M., Bao, S-J., Lu, Z., and Hong, Y., “Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells,” Chem. Commun., 1290-1292(2008)
  23. Fricke, K., Harnisch, F., and Schroder, U., “On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells,” Energy Environ. Sci., 1, 144-147(2008) https://doi.org/10.1039/b802363h
  24. Orazem, M. E., and Tribollet, B., Electrochemical Impedance Spectroscopy, John Wiley & Sons, New York(2008)
  25. Delnick, F. M., Jaeger, C. D., and Levy, S. C., “AC impedance study of porous carbon collectors for Li/$SO_2$ primary cells,” Chem. Eng. Commun., 35, 23-28 (1985) https://doi.org/10.1080/00986448508911214
  26. Yuan, Y., and Kim, S., “Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes.” Bull. Korean. Chem. Soc., 29(7), 1344-1348 (2008) https://doi.org/10.5012/bkcs.2008.29.7.1344