실용적 적용을 위한 미생물연료전지의 운전 조건과 설계 인자

Operational conditions and design factors of microbial fuel cell for practical application

  • 김창원 (부산대학교 사회환경시스템공학과) ;
  • 차재환 (부산대학교 사회환경시스템공학과) ;
  • 최수정 (부산대학교 사회환경시스템공학과) ;
  • 유하나 (부산대학교 사회환경시스템공학과)
  • Kim, Chang-Won (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Cha, Jae-Hwan (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Choi, Soo-Jung (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Yu, Ha-Na (Department of Civil and Environmental Engineering, Pusan National University)
  • 발행 : 2009.09.30

초록

키워드

참고문헌

  1. Global Footprint Network (http://www.footprintnetwork.org)
  2. Pachauri, R. K., Reisinger, A. and Core Writing Team, “IPCC Fourth Assessment Report - Climate Change 2007: Synthesis Report,” IPCC, Geneva, Switzerland
  3. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., “IPCC Fourth Assessment Report - Climate Change 2007: The Physical Science Basis,” Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA(2007)
  4. Logan B. E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Alterman P., Verstraete W., and Rabaey K., “Microbial fuel cells: Methodology and technology,” Environ. Sci. Technol., 40(17), 5181-5192(2006) https://doi.org/10.1021/es0605016
  5. Kim, B. H., Chang, I. S., and Gadd, G. M., “Challenges in microbial fuel cell development and operation,” Appl. Microbiol. Biotechnol., 76(3), 485-494(2007) https://doi.org/10.1007/s00253-007-1027-4
  6. Rittmann, B. E., “Microbial ecology to manage processes in environmental biotechnology,” Trends biotechnology, 24(6), 261-266(2006) https://doi.org/10.1016/j.tibtech.2006.04.003
  7. Lovley, D. R., “ Bug juice, harvesting electricity with microorganisms,”Nature reviews. Microbiology, 4(7), 494-508 (2006)
  8. Potter, M. C., “ electrical effects accompanying the decomposition of organic compounds,” Proceedings of the royal society of London. Series B, Containing papers of a biological character, 84(571), 260-276(1911) https://doi.org/10.1098/rspb.1911.0073
  9. Allen, R. M., and Bennetto, H. P., “Microbial fuel cells: electricity production from carbohydrates,” Appl. Biochem. Biotech., (39-40), 27-40(1993)
  10. Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., and Tatsumi, H.,“ Electo-chemical activity of an Fe(III)-reducing badterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors,” Biotechnol. Tech., 13, 475-478(1999) https://doi.org/10.1023/A:1008993029309
  11. Logan, B. E., “Exoelectrogenic bacteria that power microbial fuel cells,”Nature reviews. Microbiology, 7(5), 375-381 (2009)
  12. Bullen, R. A., Arnot, T. C., Lakeman, J. B, and Walsh, F. C., “Biofuel cells and their development,” Biosens. Bioelectron., 21(11), 2015-2045(2006) https://doi.org/10.1016/j.bios.2006.01.030
  13. Rinaldi, A., Mecheri, B., Garavaglia, V., Licoccia, S., Nardo, P. D., and Traversa, E., “Engineering materials and biology to boost performance of microbial fuel cells: a critical review,” Energy Environ. Sci., 1(4) 417-429(2008) https://doi.org/10.1039/b806498a
  14. Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., and Kim, H. J., “Novel BOD sensor using mediator-less microbial fuel cell,” Biotechnol. Lett., 25, 541-545(2003) https://doi.org/10.1023/A:1022891231369
  15. Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H., “Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor,” Biosens. Bioelectron., 19, 607-613(2004) https://doi.org/10.1016/S0956-5663(03)00272-0
  16. Lorenzo, M. D., Curtis, T. P., Head, I. M., and Scott, K., “A single-chamber microbial fuel cell as a biosensor for wastewaters,”Water Res., 43(13), 3145-3154(2009) https://doi.org/10.1016/j.watres.2009.01.005
  17. Lu, L., Ren, N., Xing, D., and Logan, B. E., “Hydrogen production with effluent from an ethaonol-$H_2$-coproducing fermentation reactor using a single-chamber microbial electrolysis cell,” Biosens. Bioelectron., 24(10), 3055-3060 (2009) https://doi.org/10.1016/j.bios.2009.03.024
  18. Sleutels, T. H. J. A., Hamelers, H. V. M., Rozendal, R. A., and Buisman, C. J. N., “Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes,” Int. J. Hydrogen Energy., 34(9), 3612-3620(2009) https://doi.org/10.1016/j.ijhydene.2009.03.004
  19. Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sleutels, T. H. J. A., Jeremiasse, A. W., and Rozendal, R. A., “Microbial electrolysis cells for high yield hydrogen gas production from organic matter,” Environ. Sci. Technol., 42(23), 8630-8640 (2008) https://doi.org/10.1021/es801553z
  20. Scott, K., and Murano, C., “A study of a microbial fuel cell battery using manure sludge waste,” J. Chem. Technol. Biot., echnol 82(9), 809-817(2007) https://doi.org/10.1002/jctb.1745
  21. Tender, L. M., Gray, S. A., Groveman, E., Lowy, D. A., Kauffman, P., Melhado, J., Tyce, R. C., Flynn, D., Petrecca, R., and Dobarro, J.,“ The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy,” J. power sources, 179(2), 571-575(2008) https://doi.org/10.1016/j.jpowsour.2007.12.123
  22. Ieropoulos, I., Greenman, J., and Melhuish, C., “Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability,” Int. J. Eng. Res., 32(13), 1228-1240(2008) https://doi.org/10.1002/er.1419
  23. Clauwaert, P., Mulenga, S., and Aelterman, P., “Litre-scale microbial fuel cells operated in a complete loop,” Appl. Microbiol. Biotechnol., 83(2), 241-247(2009) https://doi.org/10.1007/s00253-009-1876-0
  24. Logan, B. E., Microbial Fuel Cells, John Wiley & Sons, Inc, New York, pp. 200(2008)
  25. Clauwaert, P., Aelterman, P., Pham, T. H., Schamphelaire, L. D., Carballa, M., Rabaey, K., and Verstraete, W., “Minimizing losses in bio-electrochemical systems: the road to applications,” Appl. Microbiol. Biotechnol., 79(6), 901-913(2008) https://doi.org/10.1007/s00253-008-1522-2
  26. Min, B. K., and Logan, B. E.,“ Continuous electricity generation from domestic wastewater and organic substrate in a flat plate microbial fuel cell,” Environ. Sci. Technol., 38(21), 5809-5714 (2004) https://doi.org/10.1021/es0491026
  27. Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W., “Tubular microbial fuel cells for efficient electricity generation,” Environ. Sci. Technol., 39(20), 8077-8082(2005) https://doi.org/10.1021/es050986i
  28. Lee, H. S., Parameswaran, P., Kato-Marcus, A., Torres, C. I., and Rittmann, B. E.,“ Evaluation of energy-conversion efficiencies in microbial fuel cells(MFCs) utilizing fermentable and nonfermentable substrates,” Water Res., 42(6-7), 1501-1510(2008) https://doi.org/10.1016/j.watres.2007.10.036
  29. Thygesen, A., Poulsen, F. W., Min, B. K., Angelidaki, I., and Thomsen, A. B., “The effect of different substrate and humic acid on power generation in microbial fuel cell operation,” Bioresource Technol., 100(3), 1186-1191(2009)
  30. Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., and Kim, I. S., “Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells,” Bioresource Technol., 100(14), 3518-3525(2009) https://doi.org/10.1016/j.biortech.2009.02.065
  31. Kim, J. R., Jung, S. H., Regan, J. M., and Logan, B. E., “Electricity generation and microbial community analysis of alcohol powered microbial fuel cells,” Bioresource Technol., 98(13), 2568-2577(2007) https://doi.org/10.1016/j.biortech.2006.09.036
  32. Catal, T., Li, K., Bermek, H., and Liu, H., “Electricity production from twelve monosaccharides using microbial fuel cells,” J. Power Sources, 175(1), 196-200(2008) https://doi.org/10.1016/j.jpowsour.2007.09.083
  33. Catal, T., Xu, S., Li, K., Bermek, H., and Liu, H., “Electricity generation from polyalcohols in single-chamber microbial fuel cells,” Biosens. Bioelectron., 24(4), 849-854(2008) https://doi.org/10.1016/j.bios.2008.07.015
  34. Wen, Q., Wu, Y., Cao, D., Zhao, L., and Sun, Q., “Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater,” Bioresource Technol., 100(18), 4171-4175(2009) https://doi.org/10.1016/j.biortech.2009.02.058
  35. Nam, J. Y., Kim, H. W., Lim, K. H., and Shin, H. S., “Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell,” Bioresource Technol., in press(2009)
  36. Greenman, J., Galvez, A., Giusti, L., and Ieropoulos, I., “Electricity from landfill leachate using microbial fuel cells: Comparison with a biological filter,” Enzyme Microb. Technol., 44(2), 112-119(2009) https://doi.org/10.1016/j.enzmictec.2008.09.012
  37. Clauwaert, P., Ha D., and Verstrate, W.,“ Energy recovery from energy rich vegetable products with microbial fuel cells,” Biotechnol. Lett., 30(11), 1947-1951(2008) https://doi.org/10.1007/s10529-008-9778-2
  38. Rodrigo, M. A., Canizares, P., Lobato, J., Paz, R., Saez, C., and Linares, J. J., “Production of electricity from the treatment of urban wastewater using a microbial fuel cell,” J. Power Sources, 169(1), 198-204(2007) https://doi.org/10.1016/j.jpowsour.2007.01.054
  39. You, S. J., Zhao, Q. L., Jiang, J. Q., and Zhang, J. N., “Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell ubder continuous operation,” Chem. Biochem. Eng. Q., 20(4), 407-412(2006)
  40. Mohan, S. V., Strikanth, S., and Sarma, P. N., “Non-catalyzed microbial fuel cell(MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment,” Bioelectroche. Broenerg. 75(2), 130-135(2009) https://doi.org/10.1016/j.bioelechem.2009.03.002
  41. Raghavulu, S. V., Mohan, S. V., Reddy, M. V., Mohanakrishna, G., and Sarma, P. N., “ Behavior of single chambered mediatorless microbial fuel cell(MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment,” Int. J. Hydrogen Energy, 34(17), 7547-7554(2009) https://doi.org/10.1016/j.ijhydene.2009.05.071
  42. Lu, N., Zhou, S. G., Zhuang, L., Zhang, J. T., and Ni, H. R., “Electricity generation from starch processing wastewater using microbial fuel cell technology,” Biochem. Eng. J., 43(2), 246-251(2009) https://doi.org/10.1016/j.bej.2008.10.005
  43. Patil, S. A., Surakasi, V. P., Koul, S., Ijmulwar, S., Vivda, A., Shouche, Y. S., and Kapadnis, B. P., “Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber,” Bioresource Technol., 100(21), 5132-5139(2009) https://doi.org/10.1016/j.biortech.2009.05.041
  44. Huang, L., and Logan, B. E., “Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell,” Environmental Biotechnol., 80(2), 349-355(2008) https://doi.org/10.1007/s00253-008-1546-7
  45. Kim, J. R., Dec, J., Bruns, M. A., and Logan, B. E., “Removal of odors form swine wastewater by using microbial fuel cells,” Appl. Environ. Microbiol., 74(8), 2540-2543(2008) https://doi.org/10.1128/AEM.02268-07
  46. Feng, Y., Wang, X., Logan, B. E., and Lee, H., “Brewery wastewater treatment using air-cathode microbial fuel cells,” Environ. Biotechnol., 78(5), 873-880(2008) https://doi.org/10.1007/s00253-008-1360-2
  47. 임봉수, 박혜숙, 김흥락,“ 매립장 침출수의 생물학적 난분해성물질특성규명,” 한국물환경학회지, 21(5), 484-489(2005)
  48. Liu, H., Cheng, S., and Logan, B. E., “Power generation in fedbatch microbial fuel cells as a function on ionic strength, temperature, and reactor configuration,” Environ. Sci. Technol., 39(14), 5488-5493(2005) https://doi.org/10.1021/es050316c
  49. Kim, I. S., Chae, K. J., Choi, M. J., and Verstraete, W., “Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation,” Environ. Eng. Res., 13(2), 51-65(2008) https://doi.org/10.4491/eer.2008.13.2.051
  50. Rozendal, R. A., Hamelers, V. M., and Buisman, C. J, “Effect of membrane cation transfer on pH and microbial fuel cell performance,” Environ. Sci. Technol., 40(17), 5206-5211(2006) https://doi.org/10.1021/es060387r
  51. Torres, C. I., Marcus, A. K., and Rittmann, B. E., “Proton Transport inside the biofilm limits electrical current generation by anode-respiring bacteria,” Biotechnol. Bioeng., 100(5), 872-881(2008) https://doi.org/10.1002/bit.21821
  52. Jadhav, G. S., and Ghangrekar, M. M., “Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration,” Biosource Technology, 100(2), 717-723(2009) https://doi.org/10.1016/j.biortech.2008.07.041
  53. Hong, S. W., Chang, I. S., Choi, Y. S., and Chung, T. H., “Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell,” Biosource Technol., 100(12), 3029-3035(2009) https://doi.org/10.1016/j.biortech.2009.01.030
  54. Min, B. K., Roman, O. B., and Angelidaki, I., “Important of temperature and anodic medium composition on microbial fuel cell(MFC) performance,” Biotechnol. Lett., 30(7), 1213-1218 (2008) https://doi.org/10.1007/s10529-008-9687-4
  55. Chen, G. W., Choi, S. J., Lee, T. H., Lee, G. Y., Cha, J. H., and Kim, C. W., “Application of biocathode in microbial fuel cell: cell performance and microbial community,” Appl. Microbiol. Biotechnol., 79(3), 379-388(2008) https://doi.org/10.1007/s00253-008-1451-0
  56. Cha, J. H., Choi, S. J., Yu, H. N., Kim, H. S., Kim, C. W., “Directly applicable microbial fuel cells in aeration tank for wastewater treatment,” Bioelectrochemistry, In press(2009)
  57. Aelterman, P., Versichele, M., Marzorati, M., Boon, N., and Verstrate, W., “Loading rate and external resistance control the electricity generation of microbial fuel cells with different threedimensional anodes,” Bioresource Technol., 99(18), 8895-8902 (2008) https://doi.org/10.1016/j.biortech.2008.04.061
  58. Woodward, L., Tartakovsky, B., Perrier, M., and Srinivasan, B., “Maximizing power production in a stack of microbial fuel cells using multi-unit optimization method,” Biotechnology Progress, 25(3), 676-686(2009) https://doi.org/10.1002/btpr.115
  59. Chae, K. J., Choi, M. J., Ajayi, F. F., Park, W. S., Chang, I. S. and Kim, I. S., “Mass transport through a proton exchange membrane(nafion) in microbial fuel cells,” Energy Fuels, 22, 169-176(2008) https://doi.org/10.1021/ef700308u
  60. Min, B., Cheng, S., and Logan, B. E., “Electricity generation using membrane and salt bridge microbial fuel cells,” Water Res., 39(9), 1678-1686(2005)
  61. Liu, Z., and Li, H., “Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cells,” Biochem. Eng. J., 36(3), 209-214(2007) https://doi.org/10.1016/j.bej.2007.02.021
  62. Mohan, Y. and Das, D., “Effect of ionic strength, cation exchanger and inoculum age on the performance of microbial fuel cells,” Int. J. Hydrogen Energy, 34(17), 7542-7546(2009)
  63. Oh, S., Min, B., and Logan, B. E., “Cathode performance as a factor in electricity generation in microbial fuel cells,” Environ. Sci. Technol., 38(18), 4900-4904(2004) https://doi.org/10.1021/es049422p
  64. Oh, E., and Logan, B. E., “Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells,” Appl. Microbiol. Biotechnol., 70(2), 162-169(2006) https://doi.org/10.1007/s00253-005-0066-y
  65. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, N., and Verstrate, W., “Biofuel cells select for microbial consortia that self-mediate electron transfer,” Appl. Environ. Microb., 70(9), 5373-5382(2004) https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  66. Kim, J. R., Cheng, S., Oh, S., and Logan, B. E., “Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells,” Environ. Sci. Technol., 41(3), 1004-1009(2007) https://doi.org/10.1021/es062202m
  67. Virdis, B., Rabaey, K., Yuan, Z., and Keller, J., “Microbial fuel cells for simultaneous carbon and nitrogen removal,” Water Res., 42(12), 3013-3024(2008) https://doi.org/10.1016/j.watres.2008.03.017
  68. You, S., Zhao, Q., Zhang, J., Liu, H., Jiang, J., and Zhao, S., “Increased ustainable electricity generation in up-flow aircathode microbial fuel cells,” Biosens. Bioelectron., 23(7), 1157-1160(2008) https://doi.org/10.1016/j.bios.2007.10.010
  69. Cha, J., Kim, C., Choi, S., Lee, G., Chen, G., and Lee, T., “Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from domestic wastewater,” Wat. Sci. Technol., In-press(2009)
  70. Min, B., and Logan, B. E., “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell,” Environ. Sci. Technol., 38(21), 5809-5814 (2004) https://doi.org/10.1021/es0491026
  71. He, Z., Minteer, S. D., and Angenent, L., T., “Electricity generation from artificial wastewater using an upflow microbial fuel cell,” Environ. Sci. Technol., 39(14), 5262-5267(2005) https://doi.org/10.1021/es0502876
  72. He, Z., Wagner, N., Minteer, S. D., and Angenent, L. T., “An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy,” Environ. Sci. Technol., 40(17), 5212-5217(2006) https://doi.org/10.1021/es060394f
  73. Freguia, S., Rabaey, K., Yuan, Z., and Keller, J., “Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells,” Water Res., 42(6-7), 1387-1396(2008) https://doi.org/10.1016/j.watres.2007.10.007
  74. Park, D. H., and Zeikus, J. G.,“ Improved fuel cell and electrode designs for producing electricity from microbial degradation,” Biotechnol. Bioeng., 81(3), 348-355(2003) https://doi.org/10.1002/bit.10501
  75. Liu, H., and Logan, B. E., “Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane,” Environ. Sci. Technol., 38(14), 4040-4046(2004) https://doi.org/10.1021/es0499344
  76. Cheng, S., Liu, H., and Logan, B. E., “Power densities using different cathode catalysts (Pt and CoTMPP) and Polymer binders (Nafion and PTFE) in single chamber microbial fuel cells,” Environ. Sci. Technol., 40(1), 364-369(2006) https://doi.org/10.1021/es0512071
  77. Biffinger, J. C., Ray, R., Little, B., and Ringenisen, B. R., “Diversifying Biological fuel cell designs by use of nanoporous filters,” Environ. Sci. Technol., 41(4), 1444-1449(2007) https://doi.org/10.1021/es061634u
  78. Sun, J., Hu, Y., Bi, Z., and Cao, Y., “Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation,” J. power sources, 187(2), 471-479(2009) https://doi.org/10.1016/j.jpowsour.2008.11.022
  79. Min, B., and Angelidaki, I., “Innovative microbial fuel cell for electricity production from anaerobic reactors,” J. Power Sources, 180(1), 641-647(2008) https://doi.org/10.1016/j.jpowsour.2008.01.076
  80. Biffinger, J. C., Byrd, J. N, Dudley B. L., and Ringeisen, B. R, “Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells,” Biosens. Bioelectron., 23(6), 820-826(2008) https://doi.org/10.1016/j.bios.2007.08.021
  81. Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., and M/ Jones-Meehan, J., “High Power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10,” Environ. Sci. Technol., 40(8), 2629-2634(2006) https://doi.org/10.1021/es052254w
  82. Ringeisen, B. R., Ray, R., and Little, B.,“ A miniature microbial fuel cell operating with an aerobic anode chamber,” J. Power Sources, 165(2), 591-597(2007) https://doi.org/10.1016/j.jpowsour.2006.10.026
  83. Lowe, K. L., Straube, W., Little, B., and Jones-Meehan, J., “Aerobic and Anaerobic Reduction of Cr(VI) by Shewanella oneidensis Effects of Cationic Metals, Sorbing Agents and Mixed Microbial Cultures,” Acta Biotechnol., 23(2-3), 161-178 (2003) https://doi.org/10.1002/abio.200390024
  84. Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., and Verstraete, W., “Continuous electricity generation at high voltages and currents using stacked microbial fuel cells,” Environ. Sci. Technol., 40(10), 3388-3394(2006) https://doi.org/10.1021/es0525511
  85. Oh, S. E., and Logan, B. E., “Voltage reversal during microbial fuel cell stack operation,” J. Power Sources, 167(1), 11-17(2007) https://doi.org/10.1016/j.jpowsour.2007.02.016
  86. Shin, S., Choi, Y., Na, S., Jung, S., and Kim, S., “Development of biopolar plate stack type microbial fuel cells,” Bull. Korean Chem. Soc., 27(2), 281-285(2006) https://doi.org/10.5012/bkcs.2006.27.2.281