Distribution of Pollutant Content within Surface Sediment and Evaluation of Its Removal Efficiency in the Sihwa Constructed Wetland

시화호 인공습지에서 표층퇴적토의 오염물질 함량 분포와 제거효율 평가

  • Choi, Don-Hyeok (Sihwa Lake Environmental Management Center, Korea Water Resources Corporation) ;
  • Choi, Kwang-Soon (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kim, Dong-Sup (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kim, Sea-Won (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Hwang, In-Seo (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Lee, Mi-Kyung (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kang, Ho (Civil and Environmental Engineering, Chungnam National University) ;
  • Kim, Eun-Soo (Marine Environment and Pollution Prevention Research Department, Korea Ocean Research and Development Institute)
  • 최돈혁 (한국수자원공사 시화호환경관리센터) ;
  • 최광순 (한국수자원공사 수자원연구원) ;
  • 김동섭 (한국수자원공사 수자원연구원) ;
  • 김세원 (한국수자원공사 수자원연구원) ;
  • 황인서 (한국수자원공사 수자원연구원) ;
  • 이미경 (한국수자원공사 수자원연구원) ;
  • 강호 (충남대학교 토목환경공학부) ;
  • 김은수 (해양연구원 새만금해양환경연구단)
  • Received : 2009.06.29
  • Accepted : 2009.08.07
  • Published : 2009.09.30

Abstract

To estimate the pollutant removal efficiency by surface sediment, matter content within surface sediment and its release from the sediment were investigated at 12 sites in the Sihwa constructed wetland. The content of COD, TOC, IL, TN, and TP within sediment varied temporally and spacially, showing ranges of 4.1~7.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g, respectively. The contents of organic matter and TN were significantly highest in March and decreased towards fall (March${\geq}$May${\geq}$July${\geq}$September, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN), whereas TP content was not significant statistically in difference between sampling times. The contents of heavy metals also varied largely with sampling sites and times (As:3.5~3.9 ${\mu}g$/g, Cd:0.08~0.38 ${\mu}g$/g, Cr:51.8~107.0 ${\mu}g$/g, Cu:16.4~81.8 ${\mu}g$/g, Pb:26.~81.8 ${\mu}g$/g, Zn:85~559 ${\mu}g$/g). As compared with sediment quality guideline, the content of organic matter within surface sediment of the Sihwa constructed wetland was classified as unpolluted level. In contrast, the contents of TN, TP and heavy metals were classified as medium or severe pollution state, except some heavy metals (Cu and Pb). From the results of release experiment, TN, Pb, and Zn tend to be removed by surface sediment, but TP, Cd, and Cu have a tendency to released from sediment. Therefore, a relevant plan to improve the removal efficiency of pollutant (especially phosphorus) by surface sediment in the Sihwa constructed wetland is needed.

시화호 인공습지내 표층퇴적토에 의한 오염물질 제거효율을 평가하기 위하여 표층퇴적물내 물질함량과 퇴적토에 의한 오염물질의 용출여부를 조사하였다. 조사기간 동안 표층퇴적물의 COD, TOC, IL, TN, TP 함량은 각각 4.1~47.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g의 범위로 조사지점과 시기에 따라 차이를 보였다. 유기물과 TN 함량은 봄에 높고 시간이 지날수록 감소하는 경향을 보인 반면 TP 함량은 유의적인 차이를 보이지 않았다(3월${\geq}$5월${\geq}$7월${\geq}$9월, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN). 표층퇴적토의 중금속 함량은 As 3.5~13.9 ${\mu}g$/g, Cd 0.08~0.38 ${\mu}g$/g, Cr 51.8~107.0 ${\mu}g$/g, Cu 16.4~81.8 ${\mu}g$/g, Pb 26.8~81.8 ${\mu}g$/g, Zn 85~559 ${\mu}g$/g의 범위로 항목에 따라 상이한 시공간적인 분포를 보였다. 퇴적물환경기준으로 볼 때 유기물 함량은 대부분 기준 이하의 수준을 보인 반면 TN과 TP는 "중간오염" 또는 "심한 오염" 수준을 보였다. 그리고 중금속 함량은 Cd과 Pb을 제외한 모든 항목에서 퇴적물 환경기준으로 초과하는 것으로 나타났다. 퇴적토의 용출실험 결과로부터 TN, Pb, Zn은 퇴적토에 의해 제거되는 반면 TP, Cd, Cu는 퇴적토로부터 용출되는 경향을 보였다. 그러므로 시화호 인공습지에서 표층퇴적토의 수질정화기능을 향상시킬 수 있는 방안수립이 필요하다.

Keywords

References

  1. Reddy, K. R., and DeBusk, T. A., “State-of-the-art utilisation of aquatic plants in water pollution control,” Wat. Sci. Technol., 19(10), 61-79(1987)
  2. US EPA, “Design Manual; Constructed Wetlands Treatment of Municipal Wastewaters,” U. S. EPA 625/R-99/010, Cincinnati, Ohio(2000)
  3. 농림부, 농업기반공사, “농업용수 수질개선을 위한 인공습지 설계관리 요령,” 농업기반공사농어촌연구원, 안산(2004)
  4. Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W., and Xu, Min., “Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China,” Ecol. Eng., 26, 272-282(2006) https://doi.org/10.1016/j.ecoleng.2005.10.008
  5. 허재규, 남종현, 김용전, 김인선, 최경숙, 최승익, 안태석, “6년동안 운영한 인공습지의 처리효율 분석,” 한국환경복원녹화기술학회지, 10(3), 1-7(2007)
  6. 최돈혁, 최광순, 김동섭, 김세원, 최동호, 황인서, 이윤경, 강호, "시화호 인공습지에서 시공간적 수질분포 및 오염물질 제거효율 평가,“ 대한환경공학회지, 30(10), 1013-1020(2008)
  7. Ciupa, R., “The experience in the operation of constructed wetlands in North-Easter Poland,” Proceeding of the 5th international conference on wetland systems for water pollution control, Vienna, Austria, 2, pp. IX6.1-IX6.8(1996)
  8. 황경엽, 박성열, 백원석, 정제호, 김영훈, 신원식, 이남주, 황인성,“ 낙동강 퇴적물 내 중금속 존재형태 및 용출 가능성,” 상하수도학회지, 21(1), 113-122(2007)
  9. Kadlec, R. H., and Knight R. L., Treatment wetlands, Lewis Publishers, New York(2001)
  10. Horne, A. J., and Goldman, C. R., Limnology, McGraw-Hill, Inc., New York, pp. 115-132(1994)
  11. 한국수자원공사, 시화호 인공습지 수질조사 보고서, 한국수자원공사, 안산, pp. 53-64(2007)
  12. 한국수자원공사, 시화호 인공습지 운영관리 방안 연구 보고서, 한국수자원공사, 안산, pp. 31-54(2002)
  13. 해양수산부, 해양환경공정시험방법, 해양수산부 고시 제2002-84호(2006)
  14. Ruttenberg, K. C., “Development of sequential extraction method for different forms of phosphorus in marine sediments,” Limnol. Oceanogr., 37, 1460-1482 (1992) https://doi.org/10.4319/lo.1992.37.7.1460
  15. Windom, HL. S., Schropp, S. J., Calder, F. D., Rtan, J. D., Smith, Jr., R. G., Burney, L. C., Lewis, F.G., and Rawlinson, C.H., “Natural trace metal concentrations in estuarine and coastal marine sediment of the southeastern United States,” Environ. Sci. Technol., 23, 314-320(1989) https://doi.org/10.1021/es00180a008
  16. Miller-Way, T., and Twilley, R. R., “Theory and operation of continuous flow systems for the study of benthic-pelagic coupling,” Mar. Ecol. Prog. Ser., 140, 257-269(1996) https://doi.org/10.3354/meps140257
  17. Valderama, J. C., “The simultaneous analysis of total nitrogen and total phosphorus in natural waters,” Mar. Chem., 10, 109-122(1981) https://doi.org/10.1016/0304-4203(81)90027-X
  18. Danielsson, L., Magnusson, B., and Westerlund, S., “An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrometry with electrothermal atomization,” Anal. Chim. Acta., 98, 47-57 (1978) https://doi.org/10.1016/S0003-2670(01)83237-2
  19. 이동수, 김경태, 홍기훈, 이수형, “한강 본류와 지류의 중금속 농도분포.” 한국수질보전학회지, 5, 47-56(1989)
  20. Holmer, M., Gribsholt, B., and Kristensen, E., “Effects of sea level rise on growth of Spartina anglica and oxygen dynamics in rhizosphere and saltmarsh sediments,” Mar. Ecol. Prog. Ser., 225, 197-204(2002) https://doi.org/10.3354/meps225197
  21. Thamdrup, B., and Canifield, D. E., “Pathways of carbon oxidation in continental margin sediments off central Chile,” Limnol. Oceanogr., 41, 1629-1650(1996) https://doi.org/10.4319/lo.1996.41.8.1629
  22. Sawyer, C. N., and McCarty, P. L., Chemistry for Environmental Engineering, McGraw-Hill, Inc., New York, pp. 232-233(1978)
  23. US EPA, “Questions and answers about contaminated sediments”, EPA 823-F-93-009, Office of Water, Washington, D.C(1993)
  24. 해양수산부, 시화호 해양환경 개선 사업, 해양수산부, p 178 (2005)