환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber

  • 유재철 (부산대학교 사회환경시스템공학부) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Yu, Jae-Cheul (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Tae-Ho (Department of Civil and Environmental Engineering, Pusan National University)
  • 투고 : 2008.10.14
  • 심사 : 2009.04.20
  • 발행 : 2009.04.30

초록

미생물연료전지(Microbial fuel cell, MFC)의 효율은 산화전극부내의 유기물 산화율, 전기활성박테리아에 의한 전자 전달, 수소이온 전달, 환원전극내의 전자수용체의 농도 및 환원율, 내부저항 등 다양한 요소에 영향을 받는다. 특히 산소를 전자수용체로 이용하는 MFC의 경우, 환원전극내 산소농도는 MFC의 제한요소로 작용한다고 알려져 있다. 한편 MFC의 전기발생량을 높이기 위하여 여러 개의 MFC를 직렬 또는 병렬로 연결하여 전기발생량을 높이는 다양한 방법들이 연구되고 있다. 본 연구에서는 acetate를 산화전극부의 기질로 이용하고 산소를 환원전극의 전자수용체로 이용하는 단일 MFC와 직렬연결 MFC에서 환원전극의 용존산소 농도의 변화가 MFC 효율에 미치는 영향을 평가하였다. 단일 MFC의 전력밀도값(W/$m^3$)은 DO 5 > 3 > 7 > 9 mg/L으로 나타났으며, 최대전력밀도값은 42 W/$m^3$으로 나타났다. 직렬연결 MFC의 전력밀도값은 DO 5 > 7 > 9 > 3 mg/L으로 나타났으며, 최 대전력밀도값은 20 W/$m^3$이었다. 이러한 결과로부터 환원전극의 DO 농도는 MFC 설계 및 운전시에 중요한 제어인자로 고려해야 될 것으로 판단되었다. 또한 본 연구에서는 직렬연결 MFC의 운전 시, 일부 MFC에서 염의 축적으로 인한 전위역전 현상이 발생하여 전체 전기발생량이 감소하는 것을 확인할 수 있었다. 따라서 전기생산량을 높이기 위하여 MFC를 직렬로 연결하는 것보다 병렬로 연결하는 것이 보다 타당한 것으로 사료되었다.

The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

키워드

참고문헌

  1. 산업자원부, 에너지 백서(2007)
  2. Logan B. E., “Microbial Fuel Cells,” WILEY-InterScicence (2007)
  3. Hamid, R. Y., Carver, S. M., Christy, A. D., and Tuovinen, O. H., “Cathodic limitations in microbial fuel cells: An overview,” J. Power Sources, 180, 683-694 (2008) https://doi.org/10.1016/j.jpowsour.2008.02.074
  4. Du, Z., Li, H., and Gu, T., “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy,” Biotechnol. Advances, 25, 464-482(2007) https://doi.org/10.1016/j.biotechadv.2007.05.004
  5. He, Z. and Angenent, L. T., “Appliacation of bacterial biocathode in microbial fuel cells,” Electroanalysis, 18(19-20), 2009-2015(2006) https://doi.org/10.1002/elan.200603628
  6. Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., and Verstraete, W., “Continous electricity generation at high voltages and currents using stacked microbial fuel cells,” Environ. Sci. Technol., 40(10), 3388-3394(2006) https://doi.org/10.1021/es0525511
  7. Oh, S. E. and Logan, B. E., “Voltage reversal during microbial fuel cell stack operation,” J. Power Sources, 167, 11-17(2007) https://doi.org/10.1016/j.jpowsour.2007.02.016
  8. Chae, K. J., Choil, M., Ajayi, F. F., Park, W., Chang, I. S., and Kim, I. S., “Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells,” Energy Fuels, 22(1), 169-176(2008) https://doi.org/10.1021/ef700308u
  9. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J., “Operational parameters affecting the performance of a mediator-less microbial fuel cell,” Biosens. Bioelectron., 18(4), 327-334(2003) https://doi.org/10.1016/S0956-5663(02)00110-0
  10. Pham, T. H., Jang, J. K., Chang, I. S., and Kim, B. H., “Improvement of cathode reaction of a mediatorless microbial fuel cell,” J. Microb. Biotechnol., 14(2), 324-329(2004)
  11. Wang, B. and Han, J. I., “A single chamber stackable microbial fuel cell with air cathode,” Biotechnol. Lett. (2008)
  12. Liu, H., Cheng, S., and Logan, B. E., “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell,” Environ. Sci. Technol., 39(2), 658-662(2005) https://doi.org/10.1021/es048927c
  13. Tartakovsky, B. and Guiot, S. R., “A comparison of air hydrogen oxygenated microbial fuel cell reactors,” Biotechnol. Prog., 22(1), 241-246(2006) https://doi.org/10.1021/bp050225j