석영 및 철피복 모래에서 박테리아 부착.탈착: 이온강도의 영향

Adhesion and Release of Bacteria in Quartz and Iron-coated Sands: Effect of Ionic Strength

  • 이창구 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 박성직 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김현정 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 한용운 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 박정안 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김성배 (서울대학교 지역시스템공학과.농업생명과학연구원)
  • Lee, Chang-Gu (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Hyon-Chong (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Han, Yong-Un (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Park, Jeong-Ann (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering.Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2009.04.14
  • 심사 : 2009.04.28
  • 발행 : 2009.04.30

초록

본 연구에서는 칼럼실험을 이용하여 석영모래와 철피복 모래에서 박테리아(Escherichia coli, Bacillus subtilis, 그리고 Staphylococcus aureus)의 부착 및 탈착에 미치는 이온강도의 영향을 조사하였다. 실험결과, 철피복 모래에서는 이온강도가 1 mM에서 100 mM로 증가함에 따라 질량회수율이 일정(E. coli = 13.7${\pm}$0.5%, B. subtilis = 9.8${\pm}$1.3%, S. aureus = 13.0${\pm}$2.1%)한 반면, 석영모래에서는 80.7%에서 45.3%로 감소하였다(S. aureus). 용출용액의 이온강도가 100 mM에서 0.1 mM로 감소함에 따라, 석영모래에서는 평균 39.1%의 박테리아 탈착이 일어났지만, 철피복 모래에서는 탈착이 관찰되지 않았다. 철피복 모래에서 관찰된 이러한 현상은 박테리아와 철피복 모래사이의 inner-sphere complexes(이온강도의 영향을 받지 않는)에 의한 결합 때문이다. 본 연구는 박테리아와 표면변형 다공성 여재의 상호작용에 대한 지식을 증진시킨다.

This study investigated the influence of ionic strength on the adhesion and release of bacteria (Escherichia coli, Bacillus subtilis, and Staphylococcus aureus) in quartz and iron-coated sands using column experiments. Results show that the mass recovery remained constant (E. coli = 13.7${\pm}$0.5%, B. subtilis = 9.8${\pm}$1.3%, S. aureus = 13.0${\pm}$2.1%) in iron-coated sand while it decreased from 80.7 to 45.3% (S. aureus) in quartz sand with increasing ionic concentrations from 1 to 100 mM. As the ionic concentrations of leaching solution was lowered from 100 to 0.1 mM, average 39.1% of bacterial detachment was quantified from quartz sand, but no bacterial release was observed in iron-coated sand. The phenomenon observed in iron-coated sand can be attributed to the inner-sphere complexes between bacteria and coated sand, which have minimal effect from ionic strength. This study improves our knowledge regarding the bacterial interaction with surface-modified porous media.

키워드

참고문헌

  1. Souter, P. F., Cruickshank, G. D., Tankerville, M. Z. Keswick, B. H., Ellis, B. D., Langworthy, D. E., Metz, K. A., Appleby M. R., Hamilton, N., Jones, A. L., and Perry, J. D., “Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water,” J. Water Health, 1, 73-84(2003)
  2. Knapp, E. P., Herman, J. S., Hornberger, G. M., Mills, A. L., “The effect of distribution of iron-oxyhydroxide grain coatings on the transport of bacterial cells in porous media,” Environ. Geol. Water Sci., 33, 243-248(1998)
  3. Bolster, C. H., Mills, A. L., Hornberger, G. M., and Herman, J. S., “Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces,” J. Contam. Hydrol., 50, 287-305(2001) https://doi.org/10.1016/S0169-7722(01)00106-1
  4. Silliman, S. E., Dunlap, R., Fletcher, M., and Schneegurt, M. A., “Bacterial transport in heterogeneous porous media: observations from laboratory experiments,” Water Resour. Res, 37, 2699-2707(2001) https://doi.org/10.1029/2001WR000331
  5. Hall, J. A., Mailloux, B. J., Onstott, T. C., Scheibe, T. D., Fuller, M. E., Dong, H., and Deflaun M. F., “Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments,” J. Contam. Hydrol., 57, 161-187(2005) https://doi.org/10.1016/j.jconhyd.2004.11.003
  6. Lukasik, J., Cheng, Y.-F., Lu, F., Tamplin, M., and Farrah, S. R., “Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides,” Water Res., 33, 769-777(1999) https://doi.org/10.1016/S0043-1354(98)00279-6
  7. Kim, S. -B., Park, S. -J., Lee, C. -G., Choi, N. -C., Kim, D. -J., “Bacteria transport through goethite-coated sand: effects of solution pH and coated sand content,” Colloids Surf. B, 63, 236-242(2008) https://doi.org/10.1016/j.colsurfb.2007.12.003
  8. Gannon, J. T., Manilal, V. B., and Alexander, M., “Relationship between cell surface properties and transport of bacteria through soil,” Appl. Environ. Microbiol., 57, 190-193(1991)
  9. Fontes, D. E., Mills, A. L., Hornberger, G. M., and Herman, J. S., “Physical and chemical factors influencing transport of microorganisms through porous media,” Appl. Environ. Microbiol., 57, 2473-2481(1991)
  10. Ams, D. A., Fein, J. B., Dong, H., and Maurice, P. A., “Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroixde-coated and uncoated quartz grains,” Geomicrobiol. J., 21, 511-519(2004) https://doi.org/10.1080/01490450490888172
  11. Jiang, D., Huang, Q., Cai, P., Rong, X., and Chen, W., “Adsorption of Pseudomonas putida on clay minerals and iron oxide,” Colloids Surf. B, 54, 217-221(2007) https://doi.org/10.1016/j.colsurfb.2006.10.030
  12. Park, S. -J., Lee, C. -G., Kim, S. -B., “The role of phosphate in bacterial interaction with iron-coated surfaces,” Colloids Surf. B, 68, 79-82(2009) https://doi.org/10.1016/j.colsurfb.2008.09.015
  13. Hornberger, G. M., Mills, A. L., and Herman, J. S., “Bacterial transport in porous media: evaluation of a model using laboratory observations,” Water Resour. Res, 28, 915-938(1992) https://doi.org/10.1029/91WR02980
  14. Toride, N., Leij, F. J., and van Genuchten, M. Th., “The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments,” Research Report No. 137, US Salinity Laboratory
  15. Yee, N., Fein, J. B., and Daughney, C. J., “Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption,” Geochim. Cosmochim. Acta, 64, 609-617(2000) https://doi.org/10.1016/S0016-7037(99)00342-7
  16. Foppen, J. W. A., Lien, Y., and Schijven, J. F., “Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand,” Water Res., 42, 211-219(2008) https://doi.org/10.1016/j.watres.2007.06.064
  17. Kastowsky, M., Sabisch, A., Gutberlet, T., and Bradaczek, H., “Molecular modeling of bacterial deep rough mutant lipopolysaccharide of Escherichia coli.,” Eur. J. Biochem., 197, 707-716(1991) https://doi.org/10.1111/j.1432-1033.1991.tb15962.x
  18. Gannon, J. T., Manilal, V. B., Alexander, M., “Relationship between cell surface properties and transport of bacteria through soil,” Appl. Environ. Microbiol., 57, 190-193(1991)
  19. Poortinga, A. T., Bos, R., Norde, W., and Busscher, H. J., “Electric double layer interactions in bacterial adhesion to surfaces,” Surf. Sci. Report., 47, 1-32(2002) https://doi.org/10.1016/S0167-5729(02)00032-8
  20. Hahn, M. W., and O'Melia, C. R., 'Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications,' Environ. Sci. Technol., 38, 210-220(2004) https://doi.org/10.1021/es030416n
  21. Johnson, W. P., Li, X., and Assemi, S., “Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition,” Adv. Water Resour., 30, 1432-1454(2007) https://doi.org/10.1016/j.advwatres.2006.05.020