다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship

  • 김지훈 (포항공과대학교 환경공학부) ;
  • 장윤석 (포항공과대학교 환경공학부)
  • Kim, Ji-Hun (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Chang, Yoon-Seok (School of Environmental Science and Engineering, Pohang University of Science and Technology)
  • 투고 : 2008.06.11
  • 심사 : 2009.02.27
  • 발행 : 2009.02.28

초록

영가철과 혐기성 미생물을 이용한 환원적 탈염화반응을 통한 다이옥신 처리 능력을 평가하기 위해, 자유에너지 선형관계(linear free energy relationship)를 이용하여 다이옥신의 탈염화에 의한 농도 및 독성변화 예측 모델을 최초로 정립하였다. 수용액상에 존재하는 다이옥신류의 깁스자유에너지는 기존 문헌의 열역학적 계산결과를 범밀도함수이론(density functional theory)을 이용한 계산 수준으로 보정하였으며, 보정된 깁스자유에너지와 실험을 통해 얻은 탈염화 반응속도 상수와의 선형관계를 통해 다이옥신의 탈염화 반응 256개에 대한 반응속도상수를 예측하였다. 본 모델을 통해 탈염화에 의해 변화하는 다이옥신 류 76종에 대한 시간 별 농도를 계산할 수 있다. 8염화다이옥신(Octachlorinated dibenzo-p-dioxin, OCDD)이 완전히탈염화되어 dibenzo-p-dioxin (DD)로 탈염화되기까지는 100년 이상의 반응시간이 필요하였으며, 독성등가값(toxic equivalent quantity, TEQ)의 경우 탈염화가 진행되면서 초기농도의 10배 이상까지 증가하는 것으로 밝혀졌다. 이를 통해, 다이옥신의 처리를 위해서는 좀 더 빠른 탈염화 반응속도를 갖는 다른 전자공여 시스템을 사용하거나, 환원적 탈염화-라디칼 산화와 같은 복합 연계처리가 필요함을 알 수 있다. 본 논문을 통해 제시된 예측 기법은 다이옥신뿐 아니라 다른 할로겐화 화합물의 탈염화 예측과 여러 전자공여 시스템에 대한 평가에 적용이 가능하다.

Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

키워드

참고문헌

  1. Lee, S. J., Choi, S. D., Jin, G. Z., Oh, J. E., Chang, Y. S., and Shin, S. K., "Assessment of PCDD/F risk after implementation of emission reduction at a MSWI," Chemosphere, 68(5), 856-863(2007) https://doi.org/10.1016/j.chemosphere.2007.02.036
  2. Halden, R. U. and Dwyer, D. F., "Biodegradation of dioxin-related compounds: A review," Bioremediation J., 1(1), 11-25(1997) https://doi.org/10.1080/10889869709351314
  3. Jin, G. Z., Lee, S. J., Kang, J. H., Chang, Y. S., and Chang, Y. Y., "Suppressing effect of goethite on PCDD/ F and HCB emissions from plastic materials incineration," Chemosphere, 70(9), 1568-1576(2008) https://doi.org/10.1016/j.chemosphere.2007.08.059
  4. Nam, I. H., Hong, H. B., Kim, Y. M., Kim, B. H., Murugesan, K., and Chang, Y. S., "Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1," Water Res., 39(19), 4651-4660(2005) https://doi.org/10.1016/j.watres.2005.09.009
  5. Nam, I. H., Kim, Y. M., Schmidt, S., and Chang, Y. S., "Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo- p-dioxin by Sphingomonas wittichii strain RW1," Appl. Environ. Microbiol., 72(1), 112-116(2006) https://doi.org/10.1128/AEM.72.1.112-116.2006
  6. Kim, J. H., Tratnyek, P. G., and Chang, Y. S. "Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Bimetallic and Nanosized Zerovalent Iron," Environ. Sci. Technol., 42, 4106-4112(2008) https://doi.org/10.1021/es702560k
  7. Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W. G., Andreesen, J. R., Go?Risch, H., and Lechner, U., "Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium," Nature, 421(6921), 357-360(2003) https://doi.org/10.1038/nature01237
  8. Adriaens, P., Fu, Q., and Grbic-Galic, D., "Unavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments," Environ. Sci. Technol., 2252-2260(1995)
  9. Huang, C. L. I., Keith Harrison, B., Madura, J., and Dolfing, J., "Gibbs free energies of formation of PCDDs: Evaluation of estimation methods and application for predicting dehalogenation pathways," Environ. Toxicol. Chem., 15(6), 824-836(1996) https://doi.org/10.1002/etc.5620150603
  10. Dolfing, J. and Harrison, B. K., "Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments," Environ. Sci. Technol., 26(11), 2213-2218(1992) https://doi.org/10.1021/es00035a021
  11. Tratnyek, P. G., Weber, E. J., and Schwarzenbach, R. P., "Quantitative structure-activity relationships for chemical reductions of organic contaminants," Environ. Toxicol. Chem., 22(8), 1733-1742(2003) https://doi.org/10.1897/01-236
  12. Lee, J. E., Choi, W., and Mhin, B. J., "DFT calculation on the thermodynamic properties of polychlorinated dibenzop- dioxins: Intramolecular Cl-Cl repulsion effects and their thermochemical implications," J. Phys. Chem. A, 107(15), 2693-2699(2003) https://doi.org/10.1021/jp027133m
  13. Li, X. W., Shibata, E., and Nakamura, T., "Thermodynamic prediction of vapor pressures for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polybrominated dibenzo-p-dioxins," Environ. Toxicol. Chem., 24(9), 2167-2177(2005) https://doi.org/10.1897/04-528R.1
  14. Yang, G., Zhang, X., Wang, Z., Liu, H., and Ju, X., "Estimation of the aqueous solubility (-lgSw) of all polychlorinated dibenzo-furans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD) congeners by density functional theory," J. Mol. Struct. THEOCHEM, 766(1), 25-33(2006) https://doi.org/10.1016/j.theochem.2006.03.027
  15. Thauer, R. K., Jungermann, K., and Decker, K., "Energy conservation in chemotrophic anaerobic bacteria," Bacteriological Reviews, 41(1), 100-180(1977)
  16. Kolossov, E. and Stanforth, R., “The quality of QSAR models: Problems and solutions,” SAR and QSAR in Environmental Research, 18(1-2), 89-100(2007) https://doi.org/10.1080/10629360601053984
  17. Wang, Z., Huang, W., Fennell, D. E., and Peng, P., "Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc," Chemosphere, 71(2), 360-368(2008) https://doi.org/10.1016/j.chemosphere.2007.08.049
  18. Ballerstedt, H., Hantke, J., Bunge, M., Werner, B., Gerritse J., Andreesen, J. R., and Lechner, U., "Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species," FEMS Microbiol. Ecol., 47(2), 223-234(2004) https://doi.org/10.1016/S0168-6496(03)00282-4
  19. Liu, F. and Fennell, D. E., "Dechlorination and detoxification of 1,2,3,4,7,8-hexachlorodibenzofuran by a mixed culture containing Dehalococcoides ethenogenes strain 195," Environ. Sci. Technol., 42(2), 602-607(2008) https://doi.org/10.1021/es071380s