두부 폐수를 이용한 수소생산 및 미생물의 군집 변화

Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater

  • 전윤선 (서울산업대학교 환경공학과) ;
  • 조윤아 (서울산업대학교 환경공학과) ;
  • 이태진 (서울산업대학교 환경공학과)
  • Jun, Yoon-Sun (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Joe, Yoon-A (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Technology)
  • 투고 : 2008.10.10
  • 심사 : 2009.02.27
  • 발행 : 2009.02.28

초록

본 연구에서는 두부공장에서 발생된 폐수를 이용한 생물학적 수소생성 특성과 미생물의 군집 변화를 살펴보았다. 두부 폐수는 산 또는 알카리 조건에서 전처리 된 후 수소생성량을 비교 하였으며, 산처리와 열처리를 병행하여 전처리 하였을 때 가장 왕성한 수소생산을 보였으며, Gompartz 방정식을 이용한 수소가스 발생량($P_h$)은 약 661.01 mL이고 최대 수소 생성율($R_h$)은 12.21 mL/g dry wt biomass/hr 이였다. 16S rDNA의 PCR-DGGE 결과 대부분 군집은 Streptococcus sp. 미생물로 규명되었으며 수소생성에 기여도가 큰 미생물은 Streptococcus gallolyticus sub sp.으로 판단되었다.

In this study, characteristics of biological hydrogen production and microbial distribution were investigated with the wastewater of Tofu manufacturing process. Comparison of hydrogen production was conducted with acid or base pre-treatment of the wastewater. Maximum hydrogen production was acquired with combination of heat and acid treatment. Hydrogen production ($P_h$) and maximum hydrogen production rate ($R_h$) was calculated 661.01 mL and 12.21 mL/g dry wt biomass/hr from the modified Gompartz equation. Most of microbial community was analyzed as Streptococcus sp. from PCR-DGGE experiment of 16S rDNA. It was concluded that most significant microorganism for hydrogen production was Streptococcus gallolyticus sub sp. in this experiment.

키워드

참고문헌

  1. Momirlan, M. and Veziroglu, T. N., "Recent directions of world hydrogen production," Renew. Sust. Energ. Rev., 3, 219-231(1999) https://doi.org/10.1016/S1364-0321(98)00017-3
  2. Debabrata, D., Veziroglu, T. N., "Hydrogen production by biological processes: a survey of literature," Int. J. Hydrogen Energy, 26, 13-28(2001) https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Rifkin, J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth," Penguin Putnam, New Work, NY US, 15-17(2002)
  4. Rifkin, J., "The hydrogen economy," Putnam Pub Group. (2003)
  5. Benemann, J., "Hydrogen biotechnology progress and prospects," Nature Biotechnology, 14, 1101-1103(1996) https://doi.org/10.1038/nbt0996-1101
  6. Zaborsky, O. R., "Biohydrogen," Plenum Press, Newyork, 10-18(1998)
  7. Levin, D. B., Pitt, L., and Love, M., "Biohydrogen production: prospects and limitations to practical application," Int. J. Hydrogen Energy, 29, 173-185(2004) https://doi.org/10.1016/S0360-3199(03)00094-6
  8. Okamoto, M., Miyahara, T., Mizuno, O., and Noike, T., "Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes," Water Sci. Technol., 41(3), 25-32(2000)
  9. Narendra, K., Debabrata, D., "Enhancement of hydrogen production by Enterobactor cloacae IIT-BT 08," Process Biochemistry, 35, 589-593(2000) https://doi.org/10.1016/S0032-9592(99)00109-0
  10. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y., "Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora," J. Biosci. Bioeng., 92(4), 397-400(2001) https://doi.org/10.1263/jbb.92.397
  11. Vreas, L., Forney, L., Daae, F. L., and Torsvik, V., "Distribution of bacterioplankton in meromictic lake selenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA," Appl. Environ. Microbiol., 63(9), 3367-3373 (1997)
  12. Hollibaugh, J. T., Bano, N., and Ducklow, H., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria," Appl. Environ. Microbiol., 68(3), 1478-1484(2002) https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  13. Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, Rumiko Shimada, Chie Yoshida, Koichiro Hiura, Masaharu Ishii, and Yasuo Igarashi, "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter," J. Biosci. Bioeng., 91(2), 159-165(2001) https://doi.org/10.1016/S1389-1723(01)80059-1
  14. Logan, B. E., OH, S. E., Kim, I. S., Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci. Technol., 36, 2530-2535(2002) https://doi.org/10.1021/es015783i
  15. Fang, H. H. P. and Liu, H., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82, 87-93(2002) https://doi.org/10.1016/S0960-8524(01)00110-9
  16. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7, 695-699(2003) https://doi.org/10.1016/S1093-0191(02)00035-7
  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., "Colorimetric method for determination of sugars and related substances," Anal. Chem., 28(3), 350-356(1956) https://doi.org/10.1021/ac60111a017
  18. Miller, G. L., "Use of dinitrosalicylic acid reagent for determination of reducing sugar," Anal. Chem., 31, 426-428(1959) https://doi.org/10.1021/ac60147a030
  19. Lowry, O. H., Rasebrough, N. J., Farr, A. L., and Randall, R. J., “Protein measurement with Folin phenol reagent,” J. Biol. Chem., 193, 265-275(1951)
  20. APWA, AWWA, WPCF, “Standard methods for the examination of water and wastewater,” 20th ed.(1999)
  21. Minnan, L., Jinli, H., Xuijuan, W., Jinzao, C., Chuannan, L., Fengzhang, Z., Liangshu, X., “Isolation and characterization of a high $H_{2}$-Producing strain Klebsiella oxytoca HP1 from a hot spring,” Res. Microbiol., 156, 76-81(2005) https://doi.org/10.1016/j.resmic.2004.08.004
  22. Nguyen, T. A. D., Kim, Y. P., Kim, M. S., Oh, Y. K., Sim, S. J., “Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation,” Int. J. Hydrogen Energy, 2007(accepted) https://doi.org/10.1016/j.ijhydene.2007.09.033
  23. Logan, B. E., OH, S. E., Kim, I. S. Ginkel, S. V., “Biological hydrogen production measured in batch anaerobic respirometers,” Environ. Sci. Technol., 36, 2530-2535(2002) https://doi.org/10.1021/es015783i
  24. Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, Shihwn Sung, “Biological hydrogen production: effects of pH and intermediate products,” Int. J. Hydrogen Energy, 29, 1123-1131(2004) https://doi.org/10.1016/j.ijhydene.2003.11.002
  25. Ginkel, S. V. and Sung, S. H., “Biohydrogen production as a function of pH and substrate concentration,” Environ. Sci. Technol., 35, 4726-4730(2001) https://doi.org/10.1021/es001979r
  26. Vreas, L., Forney, L., Daae, F. L., and Torsvik, V., “Distribution of bacterioplankton in meromictic lake selenvannet, as determined by denaturing gradient gel electrophoresis of PCR-Amplified gene fragments coding for 16S rRNA,” Appl. Environ. Microbiol., 63(9), 3367-3373(1997)
  27. Hollibaugh, J. T., Bano, N., and Ducklow, H., “Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria,” Appl. Environ. Microbiol., 68(3), 1478-1484(2002) https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  28. Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, Rumiko Shimada, Chie Yoshida, Koichiro Hiura, Masaharu Ishii, and Yasuo Igarashi, “Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter,” J. Biosci. Bioeng., 91(2), 159-165(2001) https://doi.org/10.1016/S1389-1723(01)80059-1
  29. Boillinger, R., Zurrer, H., and Bachofen, R., “Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria,” Appl. Microbial. Biotechnol., 23, 147-151(1985) https://doi.org/10.1007/BF00938968
  30. Auch, A. F., Henz, S. R., Holland, B. R., and Goker, M., “Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences,” BioMed Central Ltd.(2006)
  31. Hung, C. H., Cheng, C. H., Cheng, L. H., Liang, C. M., Lin, C. Y., “Application of Clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community,” Int. J Hydrogen Energy, 2007(accepted) https://doi.org/10.1016/j.ijhydene.2007.09.037
  32. Felgenstein, J., “Confidence limits on phylogenetics: an approach using the bootstrap,” Evolution, 39, 783-791(1985) https://doi.org/10.2307/2408678
  33. 정수현, 서형주, 이호, “순물이 Lactobacillus acidophilus 배지로서의 이용 및 생육균주의 내산성과 내담즙산성,” 한국식품영양과학회지, 26(5), 872-877(1997)
  34. Prescott, Harley, Klein, “Microbiology,” McGraw Hill Higher Education, 412-413(2003)