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요 약

본 논문은 저 복잡도와 높은 throughput을 지원하는 LDPC 부호화기의 구조에 대하여 제안한다. LDPC 부호화기가 갖는 높

은 복잡도 문제를 해결하기 위하여 기존의 복잡도가 높은 행렬 곱셈 연산기 대신에 간소화된 행렬 곱셈 연산기가 제안되었다.

또한 높은 throughput을 지원하기 위하여 행렬 곱셈 연산시 행 방향 연산 및 부분 병렬처리 연산을 적용하였다. 제안된 부호

화기 구조의 로직 게이트와 메모리 사용량은 기존의 5단 파이프라인 부호화기의 구조에 비하여 각각 37.4%와 56.7%씩 감소하

였다. 또한 40MHz 클럭 주파수에 대해 기존의 부호화기에 비하여 3배 이상의 throughput인 최대 800Mbps의 throughput을 지

원한다.

Abstract

This paper presents the design results of a low complexity and high throughput LDPC encoder structure. In order to solve

the high complexity problem of the LDPC encoder, a simplified matrix-vector multiplier is proposed instead of the conventional

complex matrix-vector multiplier. The proposed encoder also adopts a partially parallel structure and performs column-wise

operations in matrix-vector multiplication to achieve high throughput. Implementation results show that the proposed

architecture reduces the number of logic gates and memory elements by 37.4% and 56.7%, compared with existing five-stage

pipelined architecture. The proposed encoder also supports 800Mbps throughput at 40MHz clock frequency which is improved

about three times more than the existing architecture.

Keywords : Column-wise multiplication, LDPC code, simplified matrix-vector multiplication

Ⅰ. Introduction

Recently low-density parity-check (LDPC) codes

have received tremendous attention in wireless

communication systems due to its excellent error

correction capability close to the Shannon's channel

*
학생회원,

***
정회원, 연세대학교 전기전자공학과

(Department of Electrical and Electronic

Engineering, Yonsei University)
**

평생회원, 한국항공대학교

(Korea Aerospace University)

※ 본 연구는 지식경제부 및 정보통신연구진흥원의 대

학 IT 연구센터 지원사업의 연구결과로 수행되었

음. (IITA-2009-(C1090-0902-0012))

접수일자: 2009년7월2일, 수정완료일: 2009년9월22일

capacity for the AWGN channel
[1]

. LDPC codes have

been selected by various wireless communication

systems such as IEEE 802.11n wireless LAN

(WLAN) and IEEE 802.16e mobile WiMAX.

However, a high encoding complexity is a major

drawback of LDPC codes in spite of its excellence

performance
[2～7]

.

Since LDPC code is a class of linear block codes,

most of the encoding operations are matrix-vector

multiplications. The encoding complexity of

straightforward method is quadratically proportional

to a codeword block length which leads to the high

encoder complexity. The block codes also require
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many operations to generate parity bits, and therefore

it causes high latency and low throughput of encoder.

However, since the communication systems which

employ LDPC codes as a forward error correction

(FEC) support a high data rate, the architecture

design of a high throughput LDPC encoder is

essential. Therefore, the low complexity and the high

throughput are very significant factors in LDPC

encoder design.

In order to obtain the linear complexity encoder,

Richardson and Urbanke introduced an encoding

scheme with the modified parity check matrix
[5]

. The

linear encoding scheme transforms the random parity

check matrix into the systematic matrix by row or

column permutations. The vector additions are able to

displace the matrix-vector multiplications due to the

systematic feature of the refined matrix. Since this

encoding scheme reduces the encoder complexity for

any parity check matrix, it has been mostly used for

the design of LDPC encoder. However, this encoding

scheme requires many matrix-vector multiplications,

which cause a lot of memory requirement saving

results in pipelined structure[1, 6]. For linear

complexity encoder, extended irregular repeat

accumulate (EIRA) codes have been proposed which

need fewer matrix-vector multiplications than

Richardson's encoding scheme. In EIRA codes, the

parity check matrix is partitioned into two

sub-matrices. One of them is represented as a dual

diagonal matrix which replaces matrix-vector

multipliers by the vector adders, and the low

complexity encoder thus is achievable[8～10].

Although the above linear encoding schemes can

reduce the encoder complexity, they cannot decrease

memory that saves thousands of parity check matrix.

Quasi-cyclic (QC) LDPC codes have been proposed

to reduce the memory size. In QC LDPC codes, the

parity check matrix is defined as an array of

sub-matrices that are square matrices composed of

either an identity matrices with column permutation

or a zero matrices. This properties make it possible

to reduce the memory usage dramatically
[11～12]

.

Consequently, it is recommended to use QC and

EIRA codes for very low complexity LDPC encoder.

Both the complexity and the throughput are

affected by the encoder architecture even if the same

linear encoding scheme is heme. In order to achieve

low complexity and h oh throughput, block LDPC

encoder based on Richardson's encoding scheme is

proposed by Zhong[1]. The encoder adopted low

complexity matrix-vector multiplier with simple

hardwongd interconnection network and the partially

parallel processing with task schedulingow

compleximemory ele[1].scheme ptethe matrix-vector

multiplier and the strict condition is heask

schedulingcodetrict the peris LDPce improve[1].. To

obeaicodire effective architecture icocomplexity and

throughput, this paper proposes QC EIRA based

LDPC encoder architecture. The proposed architecture

uses simplified gow compleximemory ele[1].sc

without memory ele[1].scto reduce the complexityow

oh throughputhiteclso achieved by using the

column-wise mory ele[1].sc and partially parallel

processing architecture.

The remainder of this paper is organized as

follows. Section Ⅱ covers QC-EIRA code as the

linear encoding scheme. Section Ⅲ proposes the low

complexity and high throughput LDPC encoder

architecture. Section Ⅳ shows the implementation

results. Conclusions are given in Section V.

Ⅱ. QC-EIRA LDPC Encoding Scheme

1. Structural Property of QC-LDPC Codes

In QC-LDPC codes, the parity check matrix H

consists of array of sub-matrices as follows,













  ⋯      

⋮ ⋱ ⋱ ⋮
  ⋯      

    ⋯          

, (1)

where each sub-matrix   is × square matrix.

The square matrices are either zero matrices or

identity matrices with column permutation.
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A random parity check matrix needs a large

number of memory elements to save the parity check

matrix. It also needs a general matrix-vector

multiplier occupying a large area in LDPC encoder.

However, QC-LDPC codes fo the structured LDPC

codes not only reduce the memory requirement

remarkably but also replace the matrix-vector

multiplier by a simple logic element like a cyclic

shifter. Accordingly, the structured LDPC codes are

employed as FEC block in several wireless

communication systems[2～3].

2. EIRA Linear Encoding Scheme

In EIRA codes, the parity check matrix is

partitioned into the two sub-matrices as follows,

     , (2)

which is a sparse  × matrix.  and

 represents  × matrix and × 

matrix. ,  and  stand for a number of

sub-blocks of the codeword, information and parity

bits, respectively. Lastly,  denotes the size of each

sub-block. When the parity check matrix is described

as (2), parity bits are obtained as follows,

     , (3)

    , (4)

 
  

   , (5)

   
  

 , (6)

where  ,  and  represent codeword bits,

information bits and parity bits, respectively.

Generally, the matrix inversion changes the sparse

matrix   into much complex matrix.   in EIRA

code has the systematic form as (7)
[8]

.

 











    
⋮    

    ⋱ ⋱
⋮    

      

. (7)

그림 1. 제안된 2단 LDPC 부호화기의 구조

Fig. 1. Overall architecture of proposed two-stage

LDPC encoder.

Digit 0 and -1 in (7) stand for × identity matrix

and zero matrix, respectively.     represents the

permutation values of the first column sub-matrices.

The systematic form of (7) is able to simplify the

computation of (6).

Ⅲ. Proposed LDPC Encoder Architecture

1. Overall Architecture of Proposed LDPC 

     Encoder

Fig. 1 shows the overall architecture of the

proposed LDPC encoder which is pipelined in

two-stage. Column-wise matrix multiplication unit

(CMMU) computes  
 in the first stage and

multiple parity substitution unit (MPSU) generates

parity bits in the second stage. CMMU uses

decomposed cyclic shifter (DCS) as a matrix-vector

multiplier instead of the conventional matrix-vector

multiplier using the memory elements
[1]

or the cyclic

shifter like the logarithmic shifter[9]. DCS multiplies

the information bits by each row of the matrix  

saved in   ROM. The results of CMMU are saved

in   buffer. MPSU multiplies the inverse of   by

the results of CMMU to compute parity bits based

on (6). Since the latency of CMMU is efficiently

reduced by using the column-wise matrix

multiplication, the throughput of LDPC encoder is

determined by MPSU. In order to raise the

(866)



64 구조적 LDPC 부호의 저복잡도 및 고속 부호화기 설계 정용민 외

그림 2. 구조적 LDPC 부호화기의 decomposed cyclic

shift.

Fig. 2. Decomposed cyclic shift for structured LDPC

codes.

throughput, MPSU uses the parallel processing

architecture as Fig. 1. The results of MPSU are

saved in the parity buffer. The controller in Fig. 1

generates a start signal to operate each stage operate,

and then receives a finish signal after each block

finishes the operation.

2. Column-wise Matrix-vector Multiplication 

     Unit 

Most of the LDPC encoding operations are the

matrix-vector multiplications such as 
 in (6) that

cause a large hardware complexity and a high latency.

DCS and column-wise matrix multiplication are applied

to CMMU in the proposed encoder to reduce the

hardware overhead and latency of  
 .

A. The Structure of DCS

The parity check matrix of the structured LDPC

codes is divided into the identity matrices with

permutation and zero matrices. This means that the

matrix-vector multiplication can be replaced with

cyclic shifter and the logarithmic shifter is generally

used as the cyclic shifter due to low complexity.

However, since the logarithmic shifter cannot support

the permutation for the different size sequences, the

different size logarithmic shifter is required to support

various codeword block lengths. Even though memory

based matrix-vector multiplier supports different size

permutation with memory elements and address

generators, it causes very high complexity. In this

paper, we propose a very efficient cyclic shifter called

DCS as shown in Fig. 2.

Suppose that LDPC code supports three codeword

block lengths with different parity check matrices.

Each parity check matrix is partitioned into the square

sub-matrices with size of L1, L2 or L3 as in Fig. 2.

Also, an information block can be divided into

sub-blocks in the same manner. DCS multiplies the

sub-matrix by sub-block of information and divides

the sub-block into several tiny sub-blocks, 
, at step

1 depicted in Fig. 2. The unit of cyclic shift at step 1

is equal to the size of 
which is not one bit. It is

effective for complexity of DCS when the size of tiny

sub-block is the same as that of common divisor of L1,

L2 and L3. The cyclic shift processing at step 1 is

similar to the logarithmic shifter. However, the 1st step

cannot complete the cyclic shift because the unit of

shift is not one bit. After a coarse cyclic shift, a fine

cyclic shift is performed at the 2nd step depicted in

Fig. 2. The resolution of cyclic shift at step 2 is one bit

described as 
. In order to support different size of

cyclic shift such as L1, L2 and L3, switches (SW)

select different bits as the length of sub-block. For

example, the first switch, SW1, selects 
when the

sub-block length is L1. In other cases, SW1 chooses


at step 1. Consequently, decomposing cyclic shifter

into two steps occupies less areas than the logarithmic

shifter and another matrix-vector multiplier using

memory elements.

B. Column-wise Matrix-vector Multiplication

The throughput of LDPC encoder is determined by a

latency of matrix-vector multiplier. Hence, the latency

of CMMU multiplying parity check matrix by

information bits should be reduced to increase the

throughput. In order to reduce latency, CMMU

computes  
 of (6) in column-wise manner.
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LDPC encoder receives a single input bit or multiple

input bits per single clock cycle. CMMU computes the

matrix-vector multiplication for already received bits

during the period that current input bits are coming.

For the parity check matrix in (1),  
 is computed

with column-wise fashion as follows,


  

    ⋅


  

    ⋅ (8)

⋮

  
    

     ⋅

where  denotes the jth information sub-block and

  stands for the square sub-matrix of the parity

check matrix at the  row and the  column.

Lastly, 
 represents the  computation results for

the  row of the parity check matrix. When the 

information sub-block is entered in CMMU, it is

multiplied by sub-matrices every row and the 

column of  . The results are added to 
   , and then


 are stored in the   buffer. For other information

sub-blocks, CMMU computes matrix-vector

multiplication in the same pattern. The final value of

   ⋯    
 are stored in buffer. Since

CMMU computes multiplication during the interval

when input bits are entering, a low latency computing

of   
 is achievable.

A parallel processing architecture is applied to obtain

less latency at CMMU. However, since a fully parallel

structure of cyclic shifter causes a large hardware

complexity, partially parallel processing structure

during the time interval between two information

sub-blocks is applied by considering the tradeoff

between latency and complexity. Assume that the size

of sub-matrix  is 40 and multiple input bits per each

clock cycle is 8. Since the size of sub-matrix is 40,

CMMU waits information bits for five clock cycles.

Therefore, it is possible to computes multiplication in

partially parallel architecture as shown in Fig. 3. The

number of cyclic shifters in partially parallel

그림 3. 열 방향 행렬 곱셈 연산의 부분 병렬 처리

Fig. 3. Partially parallel processing in CMMU.

architecture is given by,

 ⌊⌋ , (9)

 ⌈⌉ , (10)

where  ,  and  stand for the size of

sub-matrix, the number of input bits per clock cycle,

and the number of rows in (1), respectively. ⌊⌋
denotes the largest integer less than or equal to  and

⌈⌉denotes the smallest integer greater than or

equal to  . Finally, the value of  in (10) represents

the number of cyclic shifter in CMMU.

3. Multiple Parity Substitution Unit (MPSU)

MPSU generates parity bits by multiplying the

results of the CMMU by 
 as in (6). The inverse

matrix  
  has the systematic form by EIRA

property, so that the multiplication is replaced with the

addition by using the substitution operation. In MPSU,

double direction substitutions, a forward and backward

substitution, are applied to decrease the latency, which

are represented as,

  
   ⋯    

 , (11)

     ≤  ≤ 


  , (12)

         , (13)

           ≤  ≤ 


  , (14)

where  means each sub-block of the results of  

(868)
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그림 4. 패리티 연산 유닛의 병렬처리 구조

Fig. 4. Parallel structure of MPSU.

  . Also,  and  represent the forward and

backward substitution results. The substitution results

are used to generate parity bits as follows,

          (15)


  , (16)

where  , the summation of   
 , means the first

sub-block of the parity bits and 
represents one

step cyclic shift. The rest of the parity bits are

obtained as follows,

  
 

  
   ≤  ≤ 


(17)

   
   

  
     


  ≤  ≤  

   ⋯    
 . (18)

Fig. 4 describes the MPSU architecture which

requires  clock cycles to generate all parity bits. The

partially parallel architecture is also employed in

MPSU to reduce the latency and also increase the

throughput of the encoder.

Ⅳ. Design and Implementation Results

1. The Hardware Complexity

The proposed encoder which is appropriate for the

structured LDPC codes is built up of two-stage

pipelined structure. In stead of the conventional cyclic

shifter or matrix-vector multiplier, DCS is proposed

to reduce the hardware complexity.

Table 1 shows the logic gates of the proposed

LDPC encoder, where  ,  ,  , and  denote the

number of sub-blocks in parity block, the sub-block

size, a number of parallelism and time for hardware

resource sharing, respectively. In CMMU, the

required number of XOR gates is ⋅ . The

logic gates of DCS is the summation of cyclic

shifting logic ⌈log⌉⋅ and the switch logic

⋅ 
⌈ log⌉  

  to support different size

shift. The amount of the required XOR logic gate in

MPSU to generate parity bits during  clock

cycles is ⋅ .

The memory requirement in terms of bits for each

stage is shown in Table 2.  denotes the number of

sub-blocks in a codeword block where stages have a

memory for information bits. Two memories are

required to support pipeline operation in CMMU, so

CMMU needs memory of ⋅⋅ bits. MPSU

has memory of ⋅⋅ bits to store the results

of CMMU and MPSU.

Block Logic Gate Count (2-input NAND)

CMMU ⋅

DCS
⋅⌈log⌉⋅

⋅
⌈ log⌉  

 

MPSU ⋅⋅ 

표 1. 제안된 부호화기의 로직 게이트 카운트

Table 1. Logic gate counts of the proposed encoder.

Block CMMU MPSU

Information ⋅ ⋅

DCS ⋅ ⋅

MPSU - ⋅

Total ⋅ ⋅ ⋅ ⋅

표 2. 메모리 사용량

Table 2. Required memory size.
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Five-stage Pipelined Encoder
[1]

Proposed Encoder

Logic gate  ⋅ ⋅ ⌈log⌉  

  ⌈log⌉⋅ 

⌈ log⌉  
 

 ⋅  

Total memory ⋅  ⋅

표 3. LDPC 부호화기의 복잡도 비교

Table 3. Complexity comparison of LDPC encoder.

Five-stage

pipelined encoder
[1] Proposed encoder Reduction rate

Logic gate 10.7K 6.7K 37.4%

Total memory 13,400bits 5,800bits 56.7%

Throughput@40MHz 266Mbps 800Mbps -

표 4. IEEE 802.11n LDPC 부호화기의 복잡도 및 throughput 비교

Table 4. Performance comparison of IEEE 802.11n LDPC encoder.

Table 3 shows the hardware complexity

comparison results between existing five-stage

pipelined architecture
[1]

and the proposed encoder.   ,

  denote the total number of non-zero blocks in

the parity check matrix, the ratio of the number of

non-zero blocks in the approximate lower triangular

matrix divided by   and the size of matrix  [1],

respectively. Since the value of   is much larger

than  , the number of logic gates of the proposed

encoder is less than that of the five-stage pipelined

architecture. The amount of the total memory is also

reduced from ⋅  to ⋅.

2. The Throughput 

The stage in pipelined architecture which has the

maximum latency determines the throughput of the

LDPC encoder. CMMU computes the matrix-vector

multiplication processing with short latency by the

column-wise multiplication. It obtains the results

within a few clock cycles after all input bits are

entered. On the other hand, MPSU necessitates  clock

cycles considering tradeoffs between the throughput

and the hardware complexity. Therefore, the latency of

MPSU is the dominant factor of the decision of the

encoder throughput. For the  information

sub-blocks and the clock frequency  , the throughput

of LDPC is determined by

⋅⋅
, where

clock cycle per codeword (CPC) means the number of

clock cycles needed in encoding and is equal to the

maximum number of clock period for each stage.

Therefore, CPC in the architecture is the same as the

clock latency of MPSU,  , and the throughput of

the encoder is given by,



⋅⋅⋅
  ⋅⋅. (19)

The throughput of the five-stage pipelined

architecture
[1]

, On the other hand, is determined as

follows,



⋅ . (20)

Since  and  indicate an integer larger than one,

the throughput of the proposed encoder is higher than

one of the five-stage pipelined architecture.

3. The Performance Comparison in IEEE 

     802.11n LDPC

Table 4 shows the performance comparison results

of the five stage LDPC encoder
[1]

and the proposed

LDPC encoder when applied to IEEE 802.11n WLAN

systems. The proposed LDPC encoder reduces the
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number of logic gate and the number of total

memory by 37.4% and 56.7%, respectively, compared

to the five-stage pipelined LDPC encoder. While the

five-stage pipelined LDPC encoder supports

throughput up to 266Mbps at 40MHz, the maximum

throughput of the proposed LDPC encoder reaches

800Mbps at the same clock frequency, which is

improved by about three times faster than the

existing architecture.

Ⅴ. Conclusions

This paper proposed the low complexity and the

high throughput LDPC encoder which is very suitable

for high throughput wireless communication systems.

The encoder is built up of the two-stage pipelined

architecture based on EIRA and structured LDPC

codes. At the first pipelined stage, the column-wise

multiplication is employed to reduce the latency of the

matrix-vector multiplications. At the second stage, the

partially parallel processing architecture is applied to

obtain high throughput. The proposed LDPC encoder

reduces the number of logic gate and memory by

37.4% and 56.7%, respectively, compared with the

five-stage pipelined LDPC encoder
[1]

in IEEE 802.11n

WLAN system. The throughput reaches 800Mbps at

40MHz clock frequency, which satisfies the maximum

data rate, 600Mbps, of IEEE 802.11n WLAN systems.

Therefore, the proposed low complexity LDPC encoder

is expected to play an important role in high-speed

wireless communication systems.
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