Simultaneous Detection of Seven Phosphoproteins in a Single Lysate Sample during Oocyte Maturation Process

난자성숙 과정의 단일 시료에서 일곱 가지 인산화 단백질의 동시 분석 방법

  • Yoon, Se-Jin (Department of Genetics, Stanford University School of Medicine) ;
  • Kim, Yun-Sun (College of Life Science, Department of Biomedical Science, CHA University) ;
  • Kim, Kyeoung-Hwa (College of Life Science, Department of Biomedical Science, CHA University) ;
  • Yoon, Tae-Ki (Fertility Center, CHA General Hospital) ;
  • Lee, Woo-Sik (Fertility Center, CHA General Hospital) ;
  • Lee, Kyung-Ah (College of Life Science, Department of Biomedical Science, CHA University)
  • 윤세진 (스탠포드 의과대학교) ;
  • 김윤선 (CHA 의과학대학교 의생명대학 의생명과학과) ;
  • 김경화 (CHA 의과학대학교 의생명대학 의생명과학과) ;
  • 윤태기 (차병원 여성의학연구소) ;
  • 이우식 (차병원 여성의학연구소) ;
  • 이경아 (CHA 의과학대학교 의생명대학 의생명과학과)
  • Published : 2009.09.30

Abstract

Objective: Phosphorylation and dephosphorylation of proteins are important in regulating cellular signaling pathways. Bead-based multiplex phosphorylation assay was conducted to detect the phosphorylation of seven proteins to maximize the information obtained from a single lysate of stage-specific mouse oocytes at a time. Methods: Cumulus-oocyte complexes (COCs) were cultured for 2 h, 8 h, and 16 h, respectively to address phosphorylation status of seven target proteins during oocyte maturation process. We analyzed the changes in phosphorylation at germinal vesicle (GV, 0 h), germinal vesicle breakdown (GVBD, 2 h), metaphase I (MI, 8 h), and metaphase II (MII, 16 h in vitro or in vivo) mouse oocytes by using Bio-Plex phosphoprotein assay system. We chose seven target proteins, namely, three mitogen-activated protein kinases (MAPKs), ERK1/2, JNK, and p38 MAPK, and other 4 well known signaling molecules, Akt, GSK-$3{\alpha}/{\beta}$, $I{\kappa}B{\alpha}$, and STAT3 to measure their phosphorylation status. Western blot analysis and kinase inhibitor treatment for ERK1/2, JNK, and Akt during in vitro maturation of oocytes were conducted for the confirmation. Results: Phosphorylation of ERK1/2, JNK, p38 MAPK and STAT3 was increased over 3 folds up to 20 folds, while phosphorylation of the other three signal molecules, Akt, GSK-$3{\alpha}/{\beta}$, and $I{\kapa}B{\alpha}$ was less than 3 folds. All of these results except for Akt were statistically significant (p<0.05). Conclusion: This is the first report on the new and valuable method measuring many phosphoproteins simultaneously in one minute sample such as oocyte lysates. All of the three MAPKs, ERK1/2, JNK, and p38 MAPK are involved in the process of mouse oocyte maturation. In addition, STAT3 might be important regulator of oocyte maturation, while Akt phosphorylation at Serine 473 may not be involved in the regulation of oocyte maturation.

목 적: 단백질 인산화는 세포신호전달에 매우 중요한 현상으로서, 수많은 조절인자들이 난자성숙에 관여하게 된다. 그러나 이들 중에서 어떤 단백질이 인산화되어 난자성숙을 조절하는지는 잘 알려져 있지 않다. 따라서 체세포의 신호전달과정에서 인산화를 통해 중요한 기능을 한다고 알려져 있는 일곱 가지 단백질들이 생쥐의 난자성숙과정에서 어떻게 인산화 되고 있는지 알아보고자 한 개 샘플에서 일곱 개의 변화를 한꺼번에 측정할 수 있는 bead-based multiplex phosphorylation assay를 이용하여 본 연구를 수행하였다. 연구방법: ICR 생쥐에 PMSG를 주사하고 46시간 후에 cumulus-oocyte complex (COCs) 형태로 미성숙 난자를 채취한 후 체외배양 하면서, 배양 2시간 후에 GVBD를, 배양 8시간 후에 MI을, 배양 16시간 후에 MII 단계의 난자를 얻었고 체내에서 배란한 MII 단계의 난자는 수란관에서 얻었다. 각 단계의 난자를 100개씩 모아서 mitogen-activated protein kinase (MAPK)에 속하는 세가지 단백질인 ERK1/2, JNK, p38 MAPK와 Akt, GSK-$3{\alpha}/{\beta}$, $I{\kapa}B{\alpha}$, STAT3 등 총 일곱 단백질의 인산화를 Bio-Plex System을 이용하여 같은 시료에서 동시에 측정하였으며 세 번의 반복실험을 통하여 얻어진 결과를 통계적으로 분석하였다. 결 과: 생쥐의 난자성숙과정에서 측정된 일곱 가지 단백질 중에서 인산화가 현저히 증가하는 단백질로는 ERK1/2, JNK, p38 MAPK와 STAT3로서 미성숙 난자에 비해서 3배에서 20배까지 인산화되는 결과를 보였다. 반면에 GSK-$3{\alpha}/{\beta}$, $I{\kappa}B{\alpha}$의 인산화의 변화는 미약하였으며, Akt의 경우에는 변화가 전혀 없었다. 난자성숙 과정에서 분석 대상 단백질들의 인산화는 GVBD 단계에서 활성화되기 시작하여 MI에서 현저히 높게 증가하며 MII까지 높게 유지되었다. 결 론: 본 연구는 난자성숙과정에서 일곱 가지 단백질의 인산화를 동시에 측정한 최초의 보고로서 이 방법은 난자와 같이 적은 양의 시료에서의 여러 개의 단백질 인산화를 동시에 분석하는데 유용할 것으로 생각된다. 본 연구결과, 세 가지 MAPK 단백질인 ERK1/2, JNK, p38 MAPK 외에도 STAT3가 난자성숙에 있어서 매우 중요한 조절자로 생각되었다. 또한 Akt의 473번 serine기의 인산화는 난자성숙에 관여하지 않음을 알 수 있었다.

Keywords

References

  1. Masui Y, Market CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 1971; 177: 129-45 https://doi.org/10.1002/jez.1401770202
  2. Villa-Diaz LG, Miyano T. Activation of p38 MAPK during porcine oocyte maturation. Biol Reprod 2004; 71: 691-6 https://doi.org/10.1095/biolreprod.103.026310
  3. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997; 9: 180-6 https://doi.org/10.1016/S0955-0674(97)80061-0
  4. Herlaar E, Brown Z. p38 MAPK signaling cascades in inflammatory disease. Mol Med Today 1999; 5: 439-47 https://doi.org/10.1016/S1357-4310(99)01544-0
  5. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 6: 1911-2
  6. Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod 2004; 70: 535-47 https://doi.org/10.1095/biolreprod.103.022830
  7. Bagowski CP, Xion W, Ferrell JE Jr. c-Jun N-terminal kinase activation in Xenopus laevis eggs and embryos a possible nongenomic role for the JNK signaling pathway. J Biol Chem 2001; 276: 1459-65 https://doi.org/10.1074/jbc.M008050200
  8. LaRosa C, Downs SM. Meiotic induction by heat stress in mouse oocytes: Involvement of AMP-activated protein kinase and MAPK family members. Biol Reprod 2006; 74: 585-92 https://doi.org/10.1095/biolreprod.105.046524
  9. Morrison DL, Yee A, Paddon HB, Vilimek D, Aebersold R, Pelech SL. Regulation of the meiosis-inhibited protein kinase, a p38 (MAPK) isoform, during meiosis and following fertilization of seastar oocytes. J Biol Chem 2000; 275: 34236-44 https://doi.org/10.1074/jbc.M004656200
  10. Perdiguero E, Pillaire MJ, Bodart JF, Hennersdorf F, Frodin M, Duesbery NS, et al. Xp38r/SAPK3 promotes meiotic G2/M transition in Xenopus oocytes and activated cdc25C. EMBO J 2003; 22: 5746-56 https://doi.org/10.1093/emboj/cdg559
  11. Komatsu J, Yamano S, Kuwahara A, Tojumura A, Irahara M. The signaling pathways linking to lysophosphatidic acidpromoted meiotic maturation in mice. Life Science 2006; 79: 506-11 https://doi.org/10.1016/j.lfs.2006.01.028
  12. Gebauer F, Richter JD. Synthesis and function of Mos: the control switch of vertebrate oocyte meiosis. BioEssays 1996; 19: 23-8 https://doi.org/10.1002/bies.950190106
  13. Abrieu A, Doree M, Fisher D. The interplay between cyclin-B-cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J Cell Sci 2001; 114: 257-67
  14. Kim KH, Kim EY, Lee KA. SEBOX is essential for early embryogenesis at the two-cell stage in the mouse. Biol Reprod 2008; 79: 1192-201 https://doi.org/10.1095/biolreprod.108.068478
  15. Yoon SJ, Kim EY, Kim YS, Lee HS, Kim KH, Bae J, Lee KA. Role of Bcl2-like 10 (Bcl2l10) in regulating mouse oocyte maturation. Biol Reprod 2009, in press
  16. Bui HT, Yamaoka E, Miyano T. Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes. Biol Reprod 2004; 70: 1843-51 https://doi.org/10.1095/biolreprod.103.026070
  17. Verlhac MH, de Pennart H, Maro B, Cobb MH, Clarke HJ. MAP kinase becomes stably activated at metaphase and is associated with microbutule-organizing centers during meiotic maturation of oocytes. Dev Biol 1993; 158: 330-40 https://doi.org/10.1006/dbio.1993.1192
  18. Verlhac MH, Kubiak JZ, Clarke HJ, Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 1994; 120: 1017-25
  19. Zernicka-Goetz M, Verlhac MH, Géraud G, Kubiak JZ. Protein phosphatases control MAP kinase activation and microtubule organization during rat oocyte maturation. Eur J Cell Biol 1997; 72: 30-8
  20. Inoue M, Naito K, Nakayama T, Sato E. Mitogen-activated protein kinase translocates into the germinal vesicle and induces germinal vesicle breakdown in porcine oocytes. Biol Reprod 1998; 58: 130-6 https://doi.org/10.1095/biolreprod58.1.130
  21. Fissore RA, He CL, Vande Woude GF. Potential role of mitogen-activated protein kinase during meiosis resumption in bovine oocytes. Bio Reprod 1996; 55: 1261-70 https://doi.org/10.1095/biolreprod55.6.1261
  22. Hoshino Y, Yokoo M, Yoshida N, Sasada H, Matsumoto H, Sato E. Phosphatidylinositol 3-kiase and Akt participate in the FSH-induced meiotic maturation of mouse oocytes. Mol Reprod Dev 2004; 69: 77-86 https://doi.org/10.1002/mrd.20150
  23. Andersen CB, Roth RA, Conti M. Protein kinase B/Akt induces resumption of meiosis in Xenopus oocyte. J Biol Chem 1998; 273: 18705-8 https://doi.org/10.1074/jbc.273.30.18705
  24. Andersen CB, Sakaue H, Nedachi T, Kovacina KS, Clayberger C, Conti M, et al. Protein kinase B/Akt is essential for the insulin-but not progesterone-stimulated resumption of meiosis in Xenopus oocytes. Biochem J 2003; 369: 227-38 https://doi.org/10.1042/BJ20021243
  25. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohon P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15: 6541-51
  26. Wang X, Liu XT, Dunn R, Ohl DA, Smith GD. Glycogen synthase kinase-3 regulates mouse oocyte homologue segregation. Mol Reprod Dev 2003; 64:96-105 https://doi.org/10.1002/mrd.10213
  27. Matsuoka T, Tahara M, Yokoi T, Nasumoto N, Takeda T, Yamaguchi M, et al. Tyrosine phosphorylation of STAT3 by leptin through leptin receptor in mouse metaphase 2 stage oocyte. Biochem Biophy Res Com 1999; 256: 480-4 https://doi.org/10.1006/bbrc.1999.0365
  28. Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, et al. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 2003; 197: 157-68 https://doi.org/10.1002/jcp.10364